Publications by authors named "Jasmin L"

Existing inhibitors of kynurenine-3-monooxygenase (KMO) have side effects and poorly cross the blood-brain barrier. Therefore, the discovery of new molecules targeting KMO isnecessary.This study aims to develop a novel therapeutic drug targeting KMO using computational methods and experimental validation of natural compounds.

View Article and Find Full Text PDF

Growing evidence suggests that a high fat diet (HFD) induces oxidative stress on the central nervous system (CNS), which predisposes to mood disorders and neuroinflammation. In this study we postulated that in addition to improving mood, antidepressant therapy would reverse inflammatory changes in the brain of rats exposed to a HFD. To test our hypothesis, we measured the effect of the antidepressant agomelatine (AGO) on anxiety- and depressive-like behaviors, as well as on CNS markers of inflammation in rats rendered obese.

View Article and Find Full Text PDF

Cancer during pregnancy is a rare condition. We report here a case of a lady diagnosed with nasopharyngeal carcinoma (NPC) at University of Malaya Medical Centre during her first pregnancy conceived via In Vitro Fertilisation (IVF). A multidisciplinary (MDT) meeting among Oncology, Obstetrics, Rheumatology and Otolaryngology teams was conducted to discuss her treatment options.

View Article and Find Full Text PDF

Effective pain management in neonates without the unwanted central nervous system (CNS) side effects remains an unmet need. To circumvent these central effects we tested the peripherally acting (brain sparing) opioid agonist loperamide in neonate rats. Our results show that: 1) loperamide (1 mg/kg, s.

View Article and Find Full Text PDF

In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats.

View Article and Find Full Text PDF

Unlabelled: It is not uncommon for patients chronically treated with opioids to exhibit opioid-induced hyperalgesia, and this has been widely reported clinically and experimentally. The molecular substrate for this hyperalgesia is multifaceted, and associated with a complex neural reorganization even in the periphery. For instance, we have recently shown that chronic morphine-induced heat hyperalgesia is associated with an increased expression of GluN2B containing N-methyl-D-aspartate receptors, as well as of the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1, in small-diameter primary sensory neurons only.

View Article and Find Full Text PDF

Patch clamp studies from dorsal root ganglia (DRGs) neurons have increased our understanding of the peripheral nervous system. Currently, the majority of recordings are conducted on dissociated DRG neurons, which is a standard preparation for most laboratories. Neuronal properties, however, can be altered by axonal injury resulting from enzyme digestion used in acquiring dissociated neurons.

View Article and Find Full Text PDF

The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions.

View Article and Find Full Text PDF

Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected.

View Article and Find Full Text PDF

We have examined satellite glial cell (SGC) proliferation in trigeminal ganglia following chronic constriction injury of the infraorbital nerve. Using BrdU labeling combined with immunohistochemistry for SGC specific proteins we positively confirmed proliferating cells to be SGCs. Proliferation peaks at approximately 4 days after injury and dividing SGCs are preferentially located around neurons that are immunopositive for ATF-3, a marker of nerve injury.

View Article and Find Full Text PDF

This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium.

View Article and Find Full Text PDF

Orofacial pain remains an understudied area in pain research given that most attention has been focused on the spinal system. In this chapter, animal models of neuropathic and inflammatory orofacial pain are presented. Four different types of pain behavior tests are then described for assessing evoked and spontaneous pain behavior in addition to conditional reward behavior.

View Article and Find Full Text PDF

Background: Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS). Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA) into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity.

View Article and Find Full Text PDF

Satellite glial cells (SGCs) undergo phenotypic changes and divide the following injury into a peripheral nerve. Nerve injury, also elicits an immune response and several antigen-presenting cells are found in close proximity to SGCs. Silencing SCG-specific molecules involved in intercellular transport (Connexin 43) or glutamate recycling (glutamine synthase) can dramatically alter nociceptive responses of normal and nerve-injured rats.

View Article and Find Full Text PDF

Neurons in sensory ganglia are surrounded by satellite glial cells (SGCs) that perform similar functions to the glia found in the CNS. When primary sensory neurons are injured, the surrounding SGCs undergo characteristic changes. There is good evidence that the SGCs are not just bystanders to the injury but play an active role in the initiation and maintenance of neuronal changes that underlie neuropathic pain.

View Article and Find Full Text PDF

Background: Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion.

View Article and Find Full Text PDF

The importance of glial cells in the generation and maintenance of neuropathic pain is becoming widely accepted. We examined the role of glial-specific gap junctions in nociception in the rat trigeminal ganglion in nerve-injured and -uninjured states. The connexin 43 (Cx43) gap-junction subunit was found to be confined to the satellite glial cells (SGCs) that tightly envelop primary sensory neurons in the trigeminal ganglion and we therefore used Cx43 RNA interference (RNAi) to alter gap-junction function in SGCs.

View Article and Find Full Text PDF

Satellite glial cells (SGCs) tightly envelop the perikarya of primary sensory neurons in peripheral ganglion and are identified by their morphology and the presence of proteins not found in ganglion neurons. These SGC-unique proteins include the inwardly rectifying K(+) channel Kir4.1, the connexin-43 (Cx43) subunit of gap junctions, the purinergic receptor P2Y4 and soluble guanylate cyclase.

View Article and Find Full Text PDF

Here we report a method for performing a chronic constriction injury (CCI) of the infraorbital nerve (ION) in the rat as a component of a chronic pain model. The surgical approach to the ION is described together with the use of a modified dental syringe needle that simplifies placing two chromic gut ligatures around the ION. This method makes the surgical procedure easier, the nerve injury more consistent across animals and reduces secondary damage to the ION and surrounding tissue.

View Article and Find Full Text PDF

Growing evidence suggests that changes in the ion buffering capacity of glial cells can give rise to neuropathic pain. In the CNS, potassium ion (K+) buffering is dependent on the glia-specific inward rectifying K+ channel Kir4.1.

View Article and Find Full Text PDF

Background: Neuroimaging studies have demonstrated differential involvement of a variety of brain centers in fibromyalgia both at baseline and in response to stimulation. The insular cortex is one such structure.

Findings: A 46-year-old woman with chronic widespread pain underwent positron emission tomography utilizing 18F-fluorodeoxyglucose while participating as a healthy control subject in a brain imaging study.

View Article and Find Full Text PDF