Publications by authors named "Jasmin Hume"

We demonstrate the fabrication of protein·gold nanoparticle (AuNP) nanocomposites in situ, leading to distinct assemblies dependent upon protein secondary structure. In the presence of pentameric coiled-coil proteins C and Q, which contain histidine tags and have helicities of 54 and 65%, respectively, templation of AuNP results in precipitation of the protein·AuNP composites with AuNPs 6.5 nm in diameter, creating macromolecular assemblies on the micrometer scale.

View Article and Find Full Text PDF

The fabrication of de novo proteins able to self-assemble on the nano- to meso-length scales is critical in the development of protein-based biomaterials in nanotechnology and medicine. Here we report the design and characterization of a protein engineered coiled-coil that not only assembles into microfibers, but also can bind hydrophobic small molecules. Under ambient conditions, the protein forms fibers with nanoscale structure possessing large aspect ratios formed by bundles of α-helical homopentameric assemblies, which further assemble into mesoscale fibers in the presence of curcumin through aggregation.

View Article and Find Full Text PDF

The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups.

View Article and Find Full Text PDF