Synthetic mRNA has recently moved into the focus of therapeutic and vaccination efforts. Incorporation of modified nucleotides during in vitro transcription can improve translation and attenuate immunogenicity, but is limited to triphosphate nucleotides which are accepted by RNA polymerases, and their incorporation is either random or complete. In contrast, site-specific modification, herein termed 'point modification' in analogy to point mutations, holds significant technical challenge.
View Article and Find Full Text PDFThe accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo.
View Article and Find Full Text PDFIn the growing field of RNA modification, precipitation techniques using antibodies play an important role. However, little is known about their specificities and protocols are missing to assess their effectiveness. Here we present a method to assess enrichment factors after MeRIP-type pulldown experiments, here exemplified with a commercial antibody against N6-methyladenosine (mA).
View Article and Find Full Text PDFRNA modifications play essential roles in gene expression regulation. Only seven out of >150 known RNA modifications are detectable transcriptome-wide by deep sequencing. Here we describe a new principle of RNAseq library preparation, which relies on a chemistry based positive enrichment of reads in the resulting libraries, and therefore leads to unprecedented signal-to-noise ratios.
View Article and Find Full Text PDF