Publications by authors named "Jasmin Hafner"

enviPath is a widely used database and prediction system for microbial biotransformation pathways of primarily xenobiotic compounds. Data and prediction system are freely available both via a web interface and a public REST API. Since its initial release in 2016, we extended the data available in enviPath and improved the performance of the prediction system and usability of the overall system.

View Article and Find Full Text PDF

When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level.

View Article and Find Full Text PDF

Micropollutants have become a serious environmental problem by threatening ecosystems and the quality of drinking water. This account investigates if advanced AI can be used to find solutions for this problem. We review background, the challenges involved, and the current state-of-the-art of quantitative structure-biodegradation relationships (QSBR).

View Article and Find Full Text PDF

Biodegradation holds promise as an effective and sustainable process for the removal of synthetic chemical pollutants. Nevertheless, rational engineering of biodegradation for pollutant remediation remains an unfulfilled goal, while chemical pollution of waters and soils continues to advance. Efforts to (i) identify functional bacteria from aquatic and soil microbiomes, (ii) assemble them into biodegrading consortia, and (iii) identify maintenance and performance determinants, are challenged by large number of pollutants and the complexity in the enzymology and ecology of pollutant biodegradation.

View Article and Find Full Text PDF

The assessment of environmental hazard indicators such as persistence, mobility, toxicity, or bioaccumulation of chemicals often results in highly variable experimental outcomes. Persistence is particularly affected due to a multitude of influencing environmental factors, with biodegradation experiments resulting in half-lives spanning several orders of magnitude. Also, half-lives may lie beyond the limits of reliable half-life quantification, and the number of available data points per substance may vary considerably, requiring a statistically robust approach for the characterization of data.

View Article and Find Full Text PDF

While man-made chemicals in the environment are ubiquitous and a potential threat to human health and ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often poorly understood. Biodegradation processes driven by microbial communities convert chemicals into transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs formed during biodegradation has been continuously improved thanks to the development of TP prediction algorithms and analytical workflows.

View Article and Find Full Text PDF

Background: Predicting in advance the behavior of new chemical compounds can support the design process of new products by directing the research toward the most promising candidates and ruling out others. Such predictive models can be data-driven using Machine Learning or based on researchers' experience and depend on the collection of past results. In either case: models (or researchers) can only make reliable assumptions about compounds that are similar to what they have seen before.

View Article and Find Full Text PDF

Advances in medicine and biotechnology rely on a deep understanding of biological processes. Despite the increasingly available types and amounts of omics data, significant knowledge gaps remain, with current approaches to identify and curate missing annotations being limited to a set of already known reactions. Here, we introduce etwork ntegrated omputational xplorer for ap nnotation of tabolism (NICEgame), a workflow to identify and curate nonannotated metabolic functions in genomes using the ATLAS of Biochemistry and genome-scale metabolic models (GEMs).

View Article and Find Full Text PDF

Metabolic "dark matter" describes currently unknown metabolic processes, which form a blind spot in our general understanding of metabolism and slow down the development of biosynthetic cell factories and naturally derived pharmaceuticals. Mapping the dark matter of metabolism remains an open challenge that can be addressed globally and systematically by existing computational solutions. In this work, we use 489 generalized enzymatic reaction rules to map both known and unknown metabolic processes around a biochemical database of 1.

View Article and Find Full Text PDF

The discovery of a drug requires over a decade of intensive research and financial investments - and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity.

View Article and Find Full Text PDF

Motivation: Finding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemicals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of secondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from big networks that integrate known biological, as well as novel, predicted biotransformations. However, the efficient analysis and the navigation of big biochemical networks remain a challenge.

View Article and Find Full Text PDF

Plant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates.

View Article and Find Full Text PDF

The ATLAS of Biochemistry is a repository of both known and novel predicted biochemical reactions between biological compounds listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG). ATLAS was originally compiled based on KEGG 2015, though the number of KEGG reactions has increased by almost 20 percent since then. Here, we present an updated version of ATLAS created from KEGG 2018 using an increased set of generalized reaction rules.

View Article and Find Full Text PDF

Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype.

View Article and Find Full Text PDF

Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

View Article and Find Full Text PDF