As a nascent class of high-entropy materials (HEMs), high-entropy metal-organic frameworks (HE-MOFs) have garnered significant attention in the fields of catalysis and renewable energy technology owing to their intriguing features, including abundant active sites, stable framework structure, and adjustable chemical properties. This review offers a comprehensive summary of the latest developments in HE-MOFs, focusing on functional design, synthesis strategies, and practical applications. This work begins by presenting the design principles for the synthesis strategies of HE-MOFs, along with a detailed description of commonly employed methods based on existing reports.
View Article and Find Full Text PDFNon-volatile memristors dynamically switch between high (HRS) and low resistance states (LRS) in response to electrical stimuli, essential for electronic memories, neuromorphic computing, and artificial intelligence. High-entropy Prussian blue analogs (HE-PBAs) are promising insertion-type battery materials due to their diverse composition, high structural integrity, and favorable ionic conductivity. This work proposes a non-volatile, bipolar memristor based on HE-PBA.
View Article and Find Full Text PDFTwo-photon lithography has revolutionized multi-photon 3D laser printing, enabling precise fabrication of micro- and nanoscale structures. Despite many advancements, challenges still persist, particularly in biofunctionalization of 3D microstructures. This study introduces a novel approach combining two-photon lithography with scanning probe lithography for post-functionalization of 3D microstructures overcoming limitations in achieving spatially controlled biomolecule distribution.
View Article and Find Full Text PDFHigh-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in bioassays.
View Article and Find Full Text PDFIn inkjet printing technology, one important factor influencing the printing quality and reliability of printed films is the interaction of the jetted ink with the substrate surface. This short-range interaction determines the wettability and the adhesion of the ink to the solid surface and is hence responsible for the final shape of the deposited ink. Here, we investigate wetting morphologies of inkjet-printed inks on patterned substrates by carefully designed experimental test structures and simulations.
View Article and Find Full Text PDFHighly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented.
View Article and Find Full Text PDFLiquid metals (LMs) play a growing role in flexible electronics and connected applications. Here, LMs come into direct contact with metal electrodes thus allowing for corrosion and additional alloying, potentially compromising device stability. Nevertheless, comprehensive studies on the interfacial interaction of the materials are still sparse.
View Article and Find Full Text PDFPrinted electronic devices have demonstrated their applicability in complex electronic circuits. There is recent progress in the realization of neuromorphic computing systems (NCSs) to implement basic synaptic functions using solution-processed materials. However, a fully printed neuron is yet to be realised.
View Article and Find Full Text PDFPrinting technology and mounting technology enable the novel field of hybrid printed electronics. To establish a hybrid printed system, one challenge is that the applied mounting process meets the requirements of functional inks and substrates. One of the most common requirements is low process temperature.
View Article and Find Full Text PDFEmerging applications in soft robotics, wearables, smart consumer products or IoT-devices benefit from soft materials, flexible substrates in conjunction with electronic functionality. Due to high production costs and conformity restrictions, rigid silicon technologies do not meet application requirements in these new domains. However, whenever signal processing becomes too comprehensive, silicon technology must be used for the high-performance computing unit.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Conductive polymers have been intensively investigated as materials for electrodes in flexible electronics due to their favorable biocompatibility and reliable electrochemical stability. Nevertheless, patterning of conductive polymers for the fabrication of devices and in various electronics applications confronts multifarious limitations and challenges. Here, we present a simple but efficient strategy to obtain conductive polymer microelectrodes via utilization of surface-tension-confined liquid patterns.
View Article and Find Full Text PDFModern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers.
View Article and Find Full Text PDFPrinted systems spark immense interest in industry, and for several parts such as solar cells or radio frequency identification antennas, printed products are already available on the market. This has led to intense research; however, printed field-effect transistors (FETs) and logics derived thereof still have not been sufficiently developed to be adapted by industry. Among others, one of the reasons for this is the lack of control of the threshold voltage during production.
View Article and Find Full Text PDFPrinted electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed.
View Article and Find Full Text PDFBattery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.
View Article and Find Full Text PDFOxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance InO field-effect transistors (FETs).
View Article and Find Full Text PDF