Publications by authors named "Jasmijn A Baaijens"

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population.

View Article and Find Full Text PDF

Background: Metagenomic profiling algorithms commonly rely on genomic differences between lineages, strains, or species to infer the relative abundances of sequences present in a sample. This observation plays an important role in the analysis of diverse microbial communities, where targeted sequencing of 16S and 18S rRNA, both well-known hypervariable genomic regions, have led to insights into microbial diversity and the discovery of novel organisms. However, the variable nature of discriminatory regions can also act as a double-edged sword, as the sought-after variability can make it difficult to design primers for their amplification through PCR.

View Article and Find Full Text PDF

Computational pangenomics is an emerging research field that is changing the way computer scientists are facing challenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and data structures were essential in the development of a plethora of software tools for the analysis of the human genome. These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000 Genomes Project.

View Article and Find Full Text PDF
Article Synopsis
  • * By sequencing SARS-CoV-2 RNA in wastewater and using specific algorithms, researchers can estimate the abundance of different viral lineages.
  • * Although clinical sequencing is more sensitive for tracking infections, wastewater sequencing provides a valuable alternative for monitoring trends in mutant prevalence when clinical testing isn't possible.
View Article and Find Full Text PDF

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging.

View Article and Find Full Text PDF

Motivation: Viruses populate their hosts as a viral quasispecies: a collection of genetically related mutant strains. Viral quasispecies assembly is the reconstruction of strain-specific haplotypes from read data, and predicting their relative abundances within the mix of strains is an important step for various treatment-related reasons. Reference genome independent ('de novo') approaches have yielded benefits over reference-guided approaches, because reference-induced biases can become overwhelming when dealing with divergent strains.

View Article and Find Full Text PDF

Motivation: Haplotype-aware genome assembly plays an important role in genetics, medicine and various other disciplines, yet generation of haplotype-resolved de novo assemblies remains a major challenge. Beyond distinguishing between errors and true sequential variants, one needs to assign the true variants to the different genome copies. Recent work has pointed out that the enormous quantities of traditional NGS read data have been greatly underexploited in terms of haplotig computation so far, which reflects that methodology for reference independent haplotig computation has not yet reached maturity.

View Article and Find Full Text PDF

A viral quasispecies, the ensemble of viral strains populating an infected person, can be highly diverse. For optimal assessment of virulence, pathogenesis, and therapy selection, determining the haplotypes of the individual strains can play a key role. As many viruses are subject to high mutation and recombination rates, high-quality reference genomes are often not available at the time of a new disease outbreak.

View Article and Find Full Text PDF

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.

View Article and Find Full Text PDF