Front Pharmacol
November 2024
Mechanistic models of hepatic clearance have been evaluated for more than 50 years, with the first author of this mini-review serving as a co-author of the first paper proposing such a model. However, published quality experimental data are only consistent with the first of these models, designated as the well-stirred model, despite the universal recognition that this model is physiologically unrepresentative of what occurs with respect to liver metabolism and transport. Within the last 3 years, our laboratory has recognized that it is possible to derive clearance equations employing the concepts of Kirchhoff's Laws from physics, independent of the differential equation approach that has been utilized to derive reaction rates in chemistry.
View Article and Find Full Text PDFWhen a new molecular entity is predicted to exhibit high clearance in humans, pharmaceutical sponsors almost universally search for similar acting back-up compounds that will demonstrate low clearance. Here we show that, except for oral dosing, there can be marked advantages to developing and commercializing controlled release formulations of high clearance drugs, the expertise of readers of this journal. Our recent publications demonstrate that the universally held pharmacokinetic principle that drug delivery rate has no effect on measured drug clearance is not correct.
View Article and Find Full Text PDFDrug Metab Dispos
August 2024
Recently, we have proposed simple methodology to derive clearance and rate constant equations, independent of differential equations, based on Kirchhoff's Laws, a common methodology from physics used to describe rate-defining processes either in series or parallel. Our approach has been challenged in three recent publications, two published in this journal, but notably what is lacking is that none evaluate experimental pharmacokinetic data. As reviewed here, manuscripts from our laboratory have evaluated published experimental data, demonstrating that the Kirchhoff's Laws approach explains (1) why all of the experimental perfused liver clearance data appear to fit the equation that was previously believed to be the well-stirred model, (2) why linear pharmacokinetic systemic bioavailability determinations can be greater than 1, (3) why renal clearance can be a function of drug input processes, and (4) why statistically different bioavailability measures may be found for urinary excretion versus systemic concentration measurements.
View Article and Find Full Text PDFIt is generally believed that bioavailability (F) calculated based on systemic concentration area under the curve (AUC) measurements cannot exceed 1.0, yet some published studies report this inconsistency. We teach and believe, based on differential equation derivations, that rate of absorption has no influence on measured systemic clearance following an oral dose, i.
View Article and Find Full Text PDFIn chemistry, rate processes are defined in terms of rate constants, with units of time, and are derived by differential equations from amounts. In contrast, when considering drug concentrations in biological systems, particularly in humans, rate processes must be defined in terms of clearance, with units of volume/time, since biological volumes, which are highly dependent on drug partition into biological tissues, cannot be easily determined. In pharmacology, pharmacokinetics, and in making drug dosing decisions, drug clearance and changes in drug clearance are paramount.
View Article and Find Full Text PDFDosing rate decisions for drugs and changes in dosing in a patient due to disease states, drug interactions and pharmacogenomics are all based on clearance, a measure of the body's ability to eliminate drug. The primary organs of elimination are the liver and the kidney. Clearance for each of these organs is a summative composition of biologic processes.
View Article and Find Full Text PDFAccurate prediction of in vivo hepatic clearance is an essential part of successful and efficient drug development; however, many investigators have recognized that there are significant limitations in the predictability of clearance with a tendency for underprediction for primarily metabolized drugs. Here, we examine the impact of adding serum or albumin into hepatocyte and microsomal incubations on the predictability of in vivo hepatic clearance. The addition of protein into hepatocyte incubations has been reported to improve the predictability for high clearance (extraction ratio) drugs and highly protein-bound drugs.
View Article and Find Full Text PDFFor a number of years, our laboratory has been investigating the underlying reasons for the published poor in vitro-in vivo extrapolation (IVIVE) predictability of human clearance both from a theoretical and from an experimental perspective. Here, we critically examine clearance concepts and commonly employed IVIVE approaches, concluding that there is no theoretical reason that IVIVE should work, just as it does not. Our analysis, however, has identified 10 misconceptions and/or poorly understood aspects of clearance that are listed in the Conclusion section of this manuscript.
View Article and Find Full Text PDFPurpose: Previous studies evaluating ticagrelor drug-drug interactions have not differentiated intestinal versus systemic mechanisms, which we do here.
Methods: Using recently published methodologies from our laboratory to differentiate metabolic- from transporter-mediated drug-drug interactions, a critical evaluation of five published ticagrelor drug-drug interactions was carried out to investigate the purported clinical significance of enzymes and transporters in ticagrelor disposition.
Results: The suggested CYP3A4 inhibitors, ketoconazole and diltiazem, displayed unchanged mean absorption time (MAT) and time of maximum concentration (T) values as was expected, i.
The potential for new chemical entities to inhibit the major cytochrome P450 (CYP) isoforms is routinely evaluated to minimize the risk of developing drugs with drug-drug interaction liabilities. CYP inhibition assays are routinely performed in a high-throughput format to efficiently screen large numbers of compounds. In evaluating a time-saving assay using diclofenac as the CYP2C9 probe substrate, a discrepancy was observed in which minimal inhibition was detected using diclofenac whereas using (S)-warfarin resulted in potent inhibition, supporting the presence of dual-binding sites in the relatively large CYP2C9 active site cavity.
View Article and Find Full Text PDFImproved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new and strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
View Article and Find Full Text PDFDrug dosing decisions in clinical medicine and in introducing a drug to market for the past 60 years are based on the pharmacokinetic/clinical pharmacology concept of clearance. We used chemical reaction engineering models to demonstrate the limitations of presently employed clearance measurements based upon systemic blood concentration in reflecting organ clearance. The belief for the last 49 years that in vivo clearance is independent of the mechanistic model for organ clearance is incorrect.
View Article and Find Full Text PDFAs lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the to extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
View Article and Find Full Text PDFThe objective of this study was to determine the effects of the OATP inhibitor rifampin on pharmacokinetic of Biopharmaceutics Drug Disposition Classification System Class 1 compound fluvastatin. A crossover study was carried out in 10 healthy subjects who were randomized to 2 phases to receive fluvastatin 20 mg orally alone and following a 30-minute 600 mg i.v.
View Article and Find Full Text PDFPurpose: The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in rivaroxaban disposition based on in vitro studies, similar to what had previously been proposed for apixaban. We recently showed that these efflux transporters were not clinically relevant for apixaban disposition and examine here their relevance for this second Factor Xa inhibitor.
Methods: Using recently published methodologies to discern metabolic- from transporter- mediated drug interactions, a critical evaluation was undertaken of 9 rivaroxaban studies reporting 12 DDIs, one study of food effects and one study of hepatic function.
Many drug candidates fail during preclinical and clinical trials due to variable or unexpected metabolism which may lead to variability in drug efficacy or adverse drug reactions. The drug metabolism field aims to address this important issue from many angles which range from the study of drug-drug interactions, pharmacogenomics, computational metabolic modeling, and others. This manuscript aims to provide brief but comprehensive manuscript summaries highlighting the conclusions and scientific importance of seven exceptional manuscripts published in recent years within the field of drug metabolism.
View Article and Find Full Text PDFThe International Society for the Study of Xenobiotics (ISSX) New Investigators Group has assembled a global team of emerging scientists to collaboratively compose a series of articles whose topics span the broad field of drug metabolism and will guide both new and established investigators alike. The New Investigator Group Committee members are proud to have provided such an opportunity to many promising early-career scientists from across the globe, and would like to acknowledge each contributor for their efforts.
View Article and Find Full Text PDFPharmacogenetic research has resulted in the identification of a multitude of genetic variants that impact drug response or toxicity. These polymorphisms are mostly common and have been included as actionable information in the labels of numerous drugs. In addition to common variants, recent advances in Next Generation Sequencing (NGS) technologies have resulted in the identification of a plethora of rare and population-specific pharmacogenetic variations with unclear functional consequences that are not accessible by conventional forward genetics strategies.
View Article and Find Full Text PDFDevelopment of new chemical entities is costly, time-consuming, and has a low success rate. Accurate prediction of pharmacokinetic properties is critical to progress compounds with favorable drug-like characteristics in lead optimization. Of particular importance is the prediction of hepatic clearance, which determines drug exposure and contributes to projection of dose, half-life, and bioavailability.
View Article and Find Full Text PDFPurpose: The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in apixaban disposition based on in vitro studies. Recommendations against co-administration of apixaban with inhibitors of these efflux transporters can be found throughout the literature as well as in the apixaban FDA label. However, the clinical relevance of such findings is questionable due to the high permeability and high solubility characteristics of apixaban.
View Article and Find Full Text PDFExtensive studies have been conducted to predict in vivo metabolic clearance from in vitro human liver metabolism parameters (i.e., in vitro-in vivo extrapolation (IVIVE)) with little success.
View Article and Find Full Text PDFIntroduction: In drug discovery and development, it is of high interest to characterize the potential for intestinal drug-drug interactions to alter bioavailability of a victim drug. For drugs that are substrates of both intestinal transporters and enzymes, estimating the relative contribution of each process has proved challenging, especially since the susceptibility of drug to uptake or efflux transporters in vitro does not always translate to clinically significant in vivo involvement. Here we introduce a powerful methodology to implicate intestinal transporters in drug-drug interactions based on the theory that clinically relevant intestinal transporter interactions will result in altered rate of absorption of victim drugs.
View Article and Find Full Text PDFClin Pharmacokinet
February 2021
Introduction: It has been recognized that significant transporter interactions result in volume of distribution changes in addition to potential changes in clearance. For drugs that are not clinically significant transporter substrates, it is expected that drug-drug interactions would not result in any changes in volume of distribution.
Methods: An evaluation of this hypothesis proceeded via an extensive analysis of published intravenous metabolic drug-drug interactions, based on clinically recommended index substrates and inhibitors of major cytochrome P450 (CYP) isoforms.
The 12th International Society for the Study of Xenobiotics (ISSX) meeting, held in Portland, OR, USA from July 28 to 31, 2019, was attended by diverse members of the pharmaceutical sciences community. The ISSX New Investigators Group provides learning and professional growth opportunities for student and early career members of ISSX. To share meeting content with those who were unable to attend, the ISSX New Investigators herein elected to highlight the "" symposium, as it engaged attendees with diverse backgrounds.
View Article and Find Full Text PDFIn reviewing previously published isolated perfused rat liver studies, we find no experimental data for high-clearance metabolized drugs that reasonably or unambiguously support preference for the dispersion and parallel-tube models versus the well-stirred model of organ elimination when only entering and exiting drug concentrations are available. It is likely that the investigators cited here may have been influenced by: 1) the unphysiologic aspects of the well-stirred model, which may have led them to undervalue the studies that directly test the various hepatic disposition models for high-clearance drugs (for which model differences are the greatest); 2) experimental assumptions made in the last century, which are no longer valid today, related to the predictability of in vivo outcomes from in vitro measures of drug elimination and the influence of albumin in hepatic drug uptake; and 3) a lack of critical review of previously reported experimental studies, resulting in inappropriate interpretation of the available experimental data. The number of papers investigating the theoretical aspects of the dispersion, parallel-tube, and well-stirred models of hepatic elimination greatly outnumber the papers that actually examine the experimental evidence available to substantiate these models.
View Article and Find Full Text PDF