This study explores the controlled, continuous production of thin carbon rods between graphite electrodes (continued electrode deposits) during an arc discharge of high voltage alternating current with a frequency of 50 Hz in liquid paraffin, along with in situ doping of the resulting material using a suspension of liquid paraffin and iron powder ( <10 μm). The surface morphology of the obtained carbon rod nanomaterials was characterized using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), scanning transmission electron microscopy (STEM) with EDX chemical composition analysis, X-ray microtomography (micro-CT), and atomic force microscopy (AFM). The AFM technique in scanning thermal microscopy (SThM) and conductive probe (CP) modes was employed to determine the temperature and electrical conductivity of the obtained nanostructures.
View Article and Find Full Text PDFThe equine hoof wall has outstanding impact resistance, which enables high-velocity gallop over hard terrain with minimum damage. To better understand its viscoelastic behavior, complex moduli were determined using two complementary techniques: conventional (∼5 mm length scale) and nano (∼1 µm length scale) dynamic mechanical analysis (DMA). The evolution of their magnitudes was measured for two hydration conditions: fully hydrated and ambient.
View Article and Find Full Text PDFAdditive manufacturing (AM) is often used to create designs inspired by topology optimization and biological structures, yielding unique cross-sectional geometries spanning across scales. However, manufacturing defects intrinsic to AM can affect material properties, limiting the applicability of a uniform material model across diverse cross-sections. To examine this phenomenon, this paper explores the influence of specimen size and layer height on the compressive modulus of polycarbonate (PC) and thermoplastic polyurethane (TPU) specimens fabricated using fused filament fabrication (FFF).
View Article and Find Full Text PDFReference point indentation (RPI) is a novel experimental technique designed to evaluate bone quality. This study utilizes two RPI instruments, BioDent and Osteoprobe, to investigate the mechanical responses of several 3D-printed polymers. We correlated the mechanical properties from a tensile test with the RPI parameters obtained from the BioDent and OsteoProbe.
View Article and Find Full Text PDFUnlabelled: Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2022
This study predicts analytically effective elastic moduli of substructures within an equine hoof wall. The hoof wall is represented as a composite material with a hierarchical structure comprised of a sequence of length scales. A bottom-up approach is employed.
View Article and Find Full Text PDFThe horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique hierarchical structure which contains tubular, lamellar, and gradient configurations. In this study, structural characterization of the hoof wall was performed revealing features previously unknown. Prominent among them are tubule bridges, which are imaged and quantified.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2022
This computational study addresses new biomimetic load-bearing implants designed to treat long bone critical-sized defects in a proximal diaphysis region. The design encompasses two strategies: a Haversian bone-mimicking approach for cortical bone and lattices based on triply periodic minimal surfaces (TPMS) for trabecular bone. Compression tests are modeled computationally via a non-linear finite element analysis with Ti6Al4V alloy as a base material.
View Article and Find Full Text PDFKeratin is a highly multifunctional biopolymer serving various roles in nature due to its diverse material properties, wide spectrum of structural designs, and impressive performance. Keratin-based materials are mechanically robust, thermally insulating, lightweight, capable of undergoing reversible adhesion through van der Waals forces, and exhibit structural coloration and hydrophobic surfaces. Thus, they have become templates for bioinspired designs and have even been applied as a functional material for biomedical applications and environmentally sustainable fiber-reinforced composites.
View Article and Find Full Text PDFRecent transmission electron microscopy images of transverse sections of human cortical bone showed that mineral lamellae (polycrystalline sheets of apatite crystals) form arcuate multi-radius patterns around collagen fibrils. The 3-6 nm thick mineral lamellae are arranged in stacks of 3-20 layers and curve around individual fibrils, few fibrils, and higher numbers of collagen fibrils. We evaluate the effect of these stacked mineral lamellae with various radius of curvature patterns on the elastic bending and torsional responses of bone at the sub-microscale using a finite element method.
View Article and Find Full Text PDFBone is a biological composite material consisting of two main components: collagen and mineral. Collagen is the most abundant protein in vertebrates, which makes it of high clinical and scientific interest. In this paper, we compare the composition and structure of cortical bone demineralized using several protocols: ethylene-diamine-tetraacetic acid (EDTA), formic acid (CHO), hydrochloric acid (HCl), and HCl/EDTA mixture.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2021
Background And Objective: Finite element models built from micro-computed tomography scans have become a powerful tool to investigate the mechanical properties of trabecular bone. There are two types of solving algorithms in the finite element method: implicit and explicit. Both of these methods have been utilized to study the trabecular bone.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2021
Bone is a composite material consisting principally of apatite mineral, collagen fibrils, non-collagenous proteins, and other organic species. Recent electron microscopy studies have shown that the mineral in bone occurs as stacks of thin polycrystalline sheets ("mineral lamellae," MLs) which surround and lie between the collagen fibrils. We focus on the effect of the interface between these mineral lamellae on the mechanical properties of bone.
View Article and Find Full Text PDFTitanium implants are widely used in dental and orthopedic surgeries. Osseointegration phenomena lead to direct contact between bone tissue and the implant surface. The quality of the bone-implant interface (BII), resulting from the properties of newly formed bone, determines the implant stability.
View Article and Find Full Text PDFThe current trend in the global advanced material market is expeditiously shifting towards more lightweight, multifunctional configurations, considering very recent developments in electrical aircraft, biomedical devices, and autonomous automobiles. Hence, the development of novel polymer nanocomposite materials is critical to advancing the current state-of-the-art of structural material technologies to address the pressing performance demands. Aiming at expanding the existing material design space, we have investigated crosslinkable aromatic polyester matrix nanocomposites.
View Article and Find Full Text PDFOsteoprobe (ActiveLife, Santa Barbara, CA) is a novel handheld microindentation instrument designed to test bone in vivo by measuring a Bone Material Strength index (BMSi). In this paper, the Osteoprobe indentation on a cortical bone is modeled computationally to gain insights into the physical interpretation of the BMSi output. The analysis is conducted using an axisymmetric finite element model with an isotropic viscoelastic-plastic constitutive law with continuum damage.
View Article and Find Full Text PDFDevelopment of porous materials consisting of polymer host matrix enriched with bioactive ceramic particles that can initiate the reproduction of cellular organisms while maintaining in vivo mechanical reliability is a long-standing challenge for synthetic bone substitutes. We present hydroxyapatite (HA) reinforced aromatic thermosetting copolyester (ATSP) matrix bionanocomposite as a potential reconfigurable bone replacement material. The nanocomposite is fabricated by solid-state mixing a matching set of precursor oligomers with biocompatible pristine HA particles.
View Article and Find Full Text PDFBone is a biological composite material having collagen and mineral as its main constituents. In order to better understand the arrangement of the mineral phase in bone, porcine cortical bone was deproteinized using different chemical treatments. This study aims to determine the best method to remove the protein constituent while preserving the mineral component.
View Article and Find Full Text PDFDeliberately controlled interfacial interactions between incorporated nanofiller particles and host polymer backbone chains constitute a critical element in the realm of polymer nanocomposites with tailorable multifunctional properties. We demonstrate the physicochemical effects induced by graphene nanoplatelets (GNP) of different sizes on the condensation polymerization reaction of aromatic thermosetting copolyester (ATSP) through the formation of electrically conductive percolating networks as enabled by interfacial interactions. Carboxylic acid and acetoxy-capped precursor oligomers of ATSP are solid-state mixed with chemically pristine GNP particles at various loading levels.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
April 2018
In this study, the sensitivity of the apparent response of trabecular bone to different constitutive models at the tissue level was investigated using finite element (FE) modeling based on micro-computed tomography (micro-CT). Trabecular bone specimens from porcine femurs were loaded under a uniaxial compression experimentally and computationally. The apparent behaviors computed using von Mises, Drucker-Prager, and Cast Iron plasticity models were compared.
View Article and Find Full Text PDFThis protocol describes the method using digital image correlation to estimate cortical strain from high speed video images of the cadaveric femoral surface obtained from mechanical testing. This optical method requires a texture of many contrasting fiduciary marks on a solid white background for accurate tracking of surface deformation as loading is applied to the specimen. Immediately prior to testing, the surface of interest in the camera view is painted with a water-based white primer and allowed to dry for several minutes.
View Article and Find Full Text PDFMechanical testing of femora brings valuable insights into understanding the contribution of clinically-measureable variables such as bone mineral density distribution and geometry on the femoral mechanical properties. Currently, there is no standard protocol for mechanical testing of such geometrically complex bones to measure strength, and stiffness. To address this gap we have developed a protocol to test cadaveric femora to fracture and to measure their biomechanical parameters.
View Article and Find Full Text PDFCadaveric fracture testing is routinely used to understand factors that affect proximal femur strength. Because ex vivo biological tissues are prone to lose their mechanical properties over time, specimen preparation for experimental testing must be performed carefully to obtain reliable results that represent in vivo conditions. For that reason, we designed a protocol and a set of fixtures to prepare the femoral specimens such that their mechanical properties experienced minimal changes.
View Article and Find Full Text PDFTwo distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus.
View Article and Find Full Text PDF