To understand human behavior, it is essential to study it in the context of natural movement in immersive, three-dimensional environments. Virtual reality (VR), with head-mounted displays, offers an unprecedented compromise between ecological validity and experimental control. However, such technological advancements mean that new data streams will become more widely available, and therefore, a need arises to standardize methodologies by which these streams are analyzed.
View Article and Find Full Text PDFMost spinal cord injuries (SCI) result in lower extremities paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI), patients may regain leg control using neural signals that actuate assistive devices. Here, we present a case of a subject with cervical SCI with an implanted electrocorticography (ECoG) device and determined whether the system is capable of motor-imagery-initiated walking in an assistive ambulator.
View Article and Find Full Text PDFObjective: The objective of this study was to develop a portable and modular brain-computer interface (BCI) software platform independent of input and output devices. We implemented this platform in a case study of a subject with cervical spinal cord injury (C5 ASIA A).
Background: BCIs can restore independence for individuals with paralysis by using brain signals to control prosthetics or trigger functional electrical stimulation.
Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restoring volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal Injury Association Impairment Scale A) using a portable fully implanted brain-computer interface within the home environment. The brain-computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity.
View Article and Find Full Text PDF