Orchidaceae is one of the most prominent flowering plant families, with many species exhibiting highly specialized reproductive and ecological adaptations. An estimated 10% of orchid species in the American tropics are pollinated by scent-collecting male euglossine bees; however, to date, there are no published genomes of species within this pollination syndrome. In this study, we present the first draft genome of an epiphytic orchid from the genus Gongora, a representative of the male euglossine bee-pollinated subtribe Stanhopeinae.
View Article and Find Full Text PDFFloral volatiles play key roles as signaling agents that mediate interactions between plants and animals. Despite their importance, few studies have investigated broad patterns of volatile variation across groups of plants that share pollinators, particularly in a phylogenetic context. The "perfume flowers," Neotropical plant species exhibiting exclusive pollination by male euglossine bees in search of chemical rewards, present an intriguing system to investigate these patterns due to the unique function of their chemical phenotypes as both signaling agents and rewards.
View Article and Find Full Text PDFGiven that flower size and pigmentation can mediate plant-pollinator interactions, many studies have focused on pollinator-driven selection on these floral traits. However, abiotic factors such as precipitation, temperature, and solar radiation also contribute to geographic variation in floral color, pattern, and size within multiple species. Several studies have described an ecogeographic pattern within species in which high temperature, high ultraviolet (UV) radiation, low precipitation and/or low latitudes are associated with increased floral anthocyanin production, smaller flowers, and/or larger UV-absorbing floral patterns (nectar guides or bullseyes).
View Article and Find Full Text PDF●Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse-grown individuals of (Onagraceae).
View Article and Find Full Text PDFAnimal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self- and cross-pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions.
View Article and Find Full Text PDF