Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho-physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro-environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross-talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co-culture of immortalized human myoblasts and motor neurons from rat-embryo spinal-cord explants, using a culture medium free from serum and neurotrophic or growth factors.
View Article and Find Full Text PDFBackground: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered MUs.
Objective: to develop and characterise a functional MU model , permitting the analysis of MU development and function.
Background: Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ.
View Article and Find Full Text PDFBackground: Although considerable research on neuromuscular junctions (NMJs) has been conducted, the prospect of in vivo NMJ studies is limited and these studies are challenging to implement. Therefore, there is a clear unmet need to develop a feasible, robust, and physiologically relevant in vitro NMJ model.
Objective: We aimed to establish a novel functional human NMJs platform, which is serum and neural complex media/neural growth factor-free, using human immortalized myoblasts and human embryonic stem cells (hESCs)-derived neural progenitor cells (NPCs) that can be used to understand the mechanisms of NMJ development and degeneration.
Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.
View Article and Find Full Text PDFListeria monocytogenes is difficult to control in food and processing environments due to its widespread nature and ability to survive in a range of adverse conditions, including low temperatures, pH, and high salt concentrations. The objective of this study was to evaluate the efficacy of Photohydroionization™ (PHI; RGF Environmental Group, Inc., Riviera, Beach, FL), a novel advanced oxidation technology, as a surface treatment to control L.
View Article and Find Full Text PDFSoybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification.
View Article and Find Full Text PDF