Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor-positive breast cancer, although the response rate is just over 50% and in vitro studies suggest that only two thirds of postmenopausal breast tumors overexpress aromatase. The goal of the present study was to validate and optimize PET with C-vorozole for measuring aromatase expression in postmenopausal breast cancer in vivo. Ten newly diagnosed postmenopausal women with biopsy-confirmed breast cancer were administered C-vorozole intravenously, and PET emission data were collected between 40 and 90 min after injection.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2017
Accumulating evidence suggests that expression of aromatase, the enzyme responsible for the conversion of androgens to estrogens, is transiently upregulated in rat stroke models. It was further suggested that increased aromatase expression is linked to neuroinflammation and that it is neuroprotective in females. Our goal was to investigate aromatase upregulation in male rats subjected to experimental stroke in relationship to neuroinflammation, infarct and response to treatment with different putative neuroprotective agents.
View Article and Find Full Text PDFIonizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells' differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes.
View Article and Find Full Text PDFIschemic stroke triggers a massive, although transient, glutamate efflux and excessive activation of NMDA receptors (NMDARs), possibly leading to neuronal death. However, multiple clinical trials with NMDA antagonists failed to improve, or even worsened, stroke outcome. Recent findings of a persistent post-stroke decline in NMDAR density, which plays a pivotal role in plasticity and memory formation, suggest that NMDAR stimulation, rather than inhibition, may prove beneficial in the subacute period after stroke.
View Article and Find Full Text PDFStroke is accompanied by neuroinflammation in humans and animal models. To examine the temporal and anatomical profile of neuroinflammation and NMDA receptors (NMDAR) in a stroke model, rats (N=17) were subjected to a 90 min occlusion of the middle cerebral artery (MCAO) and compared to sham (N=5) and intact (N=4) controls. Striatal and parietal cortical infarction was confirmed by MRI 24h after reperfusion.
View Article and Find Full Text PDFIt has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4h to 2weeks after brain injury, activation at 24h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice.
View Article and Find Full Text PDFThe wide variety of transgenic mouse models of Alzheimer's disease (AD) reflects the search for specific genes that influence AD pathology and the drive to create a clinically relevant animal model. An ideal AD mouse model must display hallmark AD pathology such as amyloid plaques, neurofibrillary tangles, reactive gliosis, dystrophic neurites, neuron and synapse loss, and brain atrophy and in parallel behaviorally mimic the cognitive decline observed in humans. Magnetic resonance (MR) microscopy (MRM) can detect amyloid plaque load, development of brain atrophy, and acute neurodegeneration.
View Article and Find Full Text PDFPeptide nucleic acids (PNAs) have stronger affinity and greater specificity than do oligonucleotides for binding to DNA and RNA and, as such, have potential utility as probes in molecular biology applications. In this study, a novel approach for labeling the PNA with radioiodine that avoided solubility issues and poor labeling encountered when trying to radioiodinate PNAs directly in solution was developed. For this approach, a purpose-designed prosthetic group that incorporated both a radioiodinatable tyrosine and a triphenylphosphonium (TPP) moiety was synthesized.
View Article and Find Full Text PDFG-protein coupled receptors exist in both high and low agonist affinity conformations, with tracer levels of agonist radioligands preferentially binding to the former. The goal of the present study was to characterize the in vivo binding of the aminoalkyindole-based, CB1 receptor agonist, R-[125/131I]AM2233 ((2-[125/131I]iodo-phenyl)-[1-(1-methyl-piperidin-2-yl-methyl)-1H-indol-3-yl]-methanone), and to use this radiotracer to selectively measure the receptor occupancy by the related CB1 receptor agonist, WIN55212-2, to the agonist-preferring affinity state of the receptor. In mouse locomotor assays, both WIN55212-2 and AM2233 (racemic) produced an approximately 60% reduction in activity at 1 mg/kg, (i.
View Article and Find Full Text PDF