Publications by authors named "Jary Delgado"

Repetitive stimulation of excitatory synapses triggers molecular events required for signal transfer across neuronal synapses. It has been hypothesized that one of these molecular events, the diffusion of extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs) (i.e.

View Article and Find Full Text PDF

Phosphorylation-dependent peptidyl-prolyl isomerization plays key roles in cell cycle progression, the pathogenesis of cancer, and age-related neurodegeneration. Most of our knowledge about the role of phosphorylation-dependent peptidyl-prolyl isomerization and the enzyme catalyzing this reaction, the peptidyl-prolyl isomerase (Pin1), is largely limited to proteins not present in neurons. Only a handful of examples have shown that phosphorylation-dependent peptidyl-prolyl isomerization, Pin1 binding, or Pin1-mediated peptidyl-prolyl isomerization regulate proteins present at excitatory synapses.

View Article and Find Full Text PDF

The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95.

View Article and Find Full Text PDF

N-methyladenosine (mA), the most prevalent internal RNA modification on mammalian messenger RNAs, regulates the fates and functions of modified transcripts through mA-specific binding proteins. In the nervous system, mA is abundant and modulates various neural functions. Whereas mA marks groups of mRNAs for coordinated degradation in various physiological processes, the relevance of mA for mRNA translation in vivo remains largely unknown.

View Article and Find Full Text PDF

Although the activation of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors has been implicated in neurodegenerative diseases, such as Alzheimer's and Huntington's disease, their physiological function remains unknown. In this study, we found that extrasynaptic GluN2B receptors play a homeostatic role by antagonizing long-term potentiation (LTP) induction under conditions of prolonged synaptic stimulation. In particular, we have previously found that brief theta-pulse stimulation (5 Hz for 30 s) triggers robust LTP, whereas longer stimulation times (5 Hz for 3 min) have no effect on basal synaptic transmission in the hippocampal CA1 region.

View Article and Find Full Text PDF

Calcium dynamics in presynaptic terminals regulate the response dynamics of most central excitatory synapses. However, this dogma has been challenged by the hypothesis that mobility of the postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype glutamate receptors (AMPAR) plays a role in tuning fast excitatory synaptic transmission. In this review, we reevaluate the factors regulating postsynaptic AMPAR mobility, reassess the modeling parameters, analyze the experimental tools, and end by providing alternative ideas stemming from recent results.

View Article and Find Full Text PDF

Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers.

View Article and Find Full Text PDF

The proximal enhancer of the cytochrome c gene (Cycs) contains binding sites for both cAMP response element binding proteins (CREB) and Nuclear Respiratory Factor 1 (NRF1). To investigate how neuronal activity regulates this enhancer region, a lentivirus was constructed in which a short-lived green fluorescent protein (GFP) was placed under the transcriptional control of the Cycs proximal enhancer linked to a synthetic core promoter. Primary hippocampal neurons were infected, and the synaptic strengths of individual neurons were measured by whole-cell patch clamping.

View Article and Find Full Text PDF

Neocortical neurons in vivo process each of their individual inputs in the context of ongoing synaptic background activity, produced by the thousands of presynaptic partners a typical neuron has. Previous work has shown that background activity affects multiple aspects of neuronal and network function. However, its effect on the induction of spike-timing dependent plasticity (STDP) is not clear.

View Article and Find Full Text PDF

Background: Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers.

View Article and Find Full Text PDF

Phosphorylation-dependent changes in AMPA receptor function have a crucial role in activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although three previously identified phosphorylation sites in AMPA receptor glutamate receptor 1 (GluR1) subunits (S818, S831, and S845) appear to have important roles in LTP and LTD, little is known about the role of other putative phosphorylation sites in GluR1. Here, we describe the characterization of a recently identified phosphorylation site in GluR1 at threonine 840.

View Article and Find Full Text PDF

Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown.

View Article and Find Full Text PDF

Depotentiation, the reversal of long-term potentiation (LTP), can be induced by activation of metabotropic glutamate receptors (mGluRs) or NMDA receptors (NMDARs). Although NMDAR-dependent depotentiation is due to a protein phosphatase-dependent erasure of LTP, the notion that mGluR-dependent depotentiation also involves LTP erasure is controversial. To address this issue we used electrophysiological and biochemical approaches to investigate mGluR-dependent depotentiation in hippocampal slices.

View Article and Find Full Text PDF

The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD.

View Article and Find Full Text PDF