Publications by authors named "Jarvie H"

Legacy phosphorus (P) is a concept advanced by Dr. Andrew Sharpley and colleagues that was originally applied to the persistence of anthropogenic signatures in watersheds, and it has since been adopted in a diversity of settings to help guide the science and management of P. Following Sharpley's example to develop consensus-based science, we considered contrasting perspectives on legacy P and defined legacy P as those stores within the environment that arise from historic human activity excluding "natural" or "background" geogenic sources.

View Article and Find Full Text PDF
Article Synopsis
  • - Phosphorus runoff from agriculture contributes significantly to freshwater eutrophication, and riparian zones are used to mitigate this by retaining phosphorus before it reaches streams.
  • - A study examined 8 riparian zones in Canada to analyze how factors like topography, frost severity, and vegetation type affect phosphorus release during winter, by measuring soil and vegetation phosphorus levels in various locations and seasons.
  • - Findings indicated that while phosphorus levels were higher at field edges and increased with frost severity in lab conditions, field results showed no strong link between phosphorus changes and frost or inundation; harvesting vegetation reduced phosphorus levels in floodwater.
View Article and Find Full Text PDF

River invertebrate communities across Europe have been changing in response to variations in water quality over recent decades, but the underlying drivers are difficult to identify because of the complex stressors and environmental heterogeneity involved. Here, using data from ∼4000 locations across England and Wales, collected over 29 years, we use three approaches to help resolve the drivers of spatiotemporal variation in the face of this complexity: i) mapping changes in invertebrate richness and community composition; ii) structural equation modelling (SEM) to distinguish land cover, water quality and climatic influences; and iii) geographically weighted regression (GWR) to identify how the apparent relationships between invertebrate communities and abiotic variables change across the area. Mapping confirmed widespread increases in richness and the proportion of pollution-sensitive taxa across much of England and Wales.

View Article and Find Full Text PDF

High-frequency nitrate-N (NO-N) data are increasingly available, while accurate assessments of in-stream NO-N retention in large streams and rivers require a better capture of complex river hydrodynamic conditions. This study demonstrates a fusion framework between high-frequency water quality data and hydrological transport models, that (1) captures river hydraulics and their impacts on solute signal propagation through river hydrodynamic modeling, and (2) infers in-stream retention as the differences between conservatively traced and reactively observed NO-N signals. Using this framework, continuous 15-min estimates of NO-N retention were derived in a 6th-order reach of the lower Bode River (27.

View Article and Find Full Text PDF

Nutrient and soil loss from agricultural areas impairs surface water quality globally. In the Great Lakes region, increases in the frequency and magnitude of harmful and nuisance algal blooms in freshwater lakes have been linked to elevated phosphorus (P) losses from agricultural fields, some of which are transported via tile drainage. This study examined whether concentrations and loads of P fractions, total suspended sediments (TSS), nitrate (NO ), and ammonium (NH ) in tile drainage in a clay soil differed between a continuous no-till system combining cover crops and surface broadcast fertilizer (no-till cover crop [NTCC]), and a more conventional tillage system with shallow tillage, fertilizer incorporation and limited use of cover crops (conventional conservation-till, CT).

View Article and Find Full Text PDF
Article Synopsis
  • * These measurements can provide detailed insights into the sources and processes affecting water quality by integrating chemical data with hydrological and biogeochemical information.
  • * The text reviews current technologies and data sets, highlights scientific advancements facilitated by this technology, and discusses future challenges in leveraging these measurements for better understanding and managing freshwater systems.
View Article and Find Full Text PDF

Although many studies have examined how improvements in wastewater treatment impact river nutrient concentrations and loads, there has been much less focus on measuring river metabolism to evaluate the wider aquatic ecosystem benefits of reducing nutrient inputs to rivers. The objectives of this study were to evaluate the effects of enhanced wastewater treatment (nitrification) on river metabolism in the Grand River, Canada's largest river draining into Lake Erie. Metabolic fingerprints and regimes (calculated from high-frequency dissolved oxygen [DO] measurements) were used to visualize whole-river ecosystem functional responses to these wastewater treatment upgrades.

View Article and Find Full Text PDF

Agricultural phosphorus (P) losses to surface water bodies remain a global eutrophication concern, despite the application of conservation practices on farm fields. Although it is generally agreed upon that the use of multiple conservation practices ("stacking") will lead to greater improvements to water quality, this may not be cost effective to farmers, reducing the likelihood of adoption. At present, wholesale recommendations of conservation practices are given; however, the application of specific conservation practices in certain environments (e.

View Article and Find Full Text PDF

Phosphorus (P) pollution of surface waters remains a challenge for protecting and improving water quality. Central to the challenge is understanding what regulates P concentrations in streams. This quantitative review synthesizes the literature on a major control of P concentrations in streams at baseflow-the sediment P buffer-to better understand streamwater-sediment P interactions.

View Article and Find Full Text PDF

The dynamics and processes of nutrient cycling and release were examined for a lowland wetland-pond system, draining woodland in southern England. Hydrochemical and meteorological data were analyzed from 1997 to 2017, along with high-resolution in situ sensor measurements from 2016 to 2017. The results showed that even a relatively pristine wetland can become a source of highly bioavailable phosphorus (P), nitrogen (N), and silicon (Si) during low-flow periods of high ecological sensitivity.

View Article and Find Full Text PDF

The aim of European water policy is to achieve good ecological status in all rivers, lakes, coastal and transitional waters by 2027. Currently, more than half of water bodies are in a degraded condition and nutrient enrichment is one of the main culprits. Therefore, there is a pressing need to establish reliable and comparable nutrient criteria that are consistent with good ecological status.

View Article and Find Full Text PDF

Agricultural runoff is an important contributor to water quality impairment. This study was conducted to evaluate the potential role of field-scale management on carbon (C), nitrogen (N), and phosphorus (P) stoichiometry in soils and runoff from agricultural fields. Cultivated and pasture fields at the Riesel watersheds in central Texas were used for this analysis, and nutrients were transformed to evaluate relative to the Redfield ratio (106 C/16 N/1 P).

View Article and Find Full Text PDF

With more than 40 countries currently proposing to boost their national bioeconomies, there is no better time for a clarion call for a "new" bioeconomy, which, at its core, tackles the current disparities and inequalities in phosphorus (P) availability. Existing biofuel production systems have widened P inequalities and contributed to a linear P economy, impairing water quality and accelerating dependence on P fertilizers manufactured from finite nonrenewable phosphate rock reserves. Here, we explore how the emerging bioeconomy in novel, value-added, bio-based products offers opportunities to rethink our stewardship of P.

View Article and Find Full Text PDF

Phosphorus (P) plays a crucial role in agriculture as a primary fertilizer nutrient-and as a cause of the eutrophication of surface waters. Despite decades of efforts to keep P on agricultural fields and reduce losses to waterways, frequent algal blooms persist, triggering not only ecological disruption but also economic, social, and political consequences. We investigate historical and persistent factors affecting agricultural P mitigation in a transect of major watersheds across North America: Lake Winnipeg, Lake Erie, the Chesapeake Bay, and Lake Okeechobee/Everglades.

View Article and Find Full Text PDF

After its discovery in 1669, phosphorus (P) was named ("the miraculous bearer of light"), arising from the chemoluminescence when white P is exposed to the atmosphere. The metaphoric association between P and light resonates through history: from the discovery of P at the start of the Enlightenment period to the vital role of P in photosynthetic capture of light in crop and food production through to new technologies, which seek to capitalize on the interactions between novel ultrathin P allotropes and light, including photocatalysis, solar energy production, and storage. In this introduction to the special section "Celebrating the 350th Anniversary of Discovering Phosphorus-For Better or Worse," which brings together 22 paper contributions, we shine a spotlight on the historical and emerging challenges and opportunities in research and understanding of the agricultural, environmental, and societal significance of this vital element.

View Article and Find Full Text PDF

The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An analysis of P stores and flows across Europe in 2005 showed that high fertiliser P inputs relative to productive outputs was driving low system P efficiency (38 % overall). Regional P imbalance (P surplus) and system P losses were highly correlated to total system P inputs and animal densities, causing unnecessary P accumulation in soils and rivers.

View Article and Find Full Text PDF

Instream biogeochemical process measurements are often short-term and localized. Here we use in situ sensors to quantify the net effects of biogeochemical processes on seasonal patterns in baseflow nitrate retention at the river-reach scale. Dual-station high-frequency in situ nitrate measurements, were coupled with high-frequency measurements of stream metabolism and dissolved inorganic carbon, in a tributary of the Buffalo National River, Arkansas.

View Article and Find Full Text PDF

Small, 1st and 2nd-order, headwater streams and ponds play essential roles in providing natural flood control, trapping sediments and contaminants, retaining nutrients, and maintaining biological diversity, which extend into downstream reaches, lakes and estuaries. However, the large geographic extent and high connectivity of these small water bodies with the surrounding terrestrial ecosystem makes them particularly vulnerable to growing land-use pressures and environmental change. The greatest pressure on the physical processes in these waters has been their extension and modification for agricultural and forestry drainage, resulting in highly modified discharge and temperature regimes that have implications for flood and drought control further downstream.

View Article and Find Full Text PDF

The phosphorus footprint (PF) is a novel concept to analyze human burdens on phosphorus resources. However, research on PF approach is still limited, and current several PF studies include incomplete phosphorus sources and have limited quantitative interpretation about the drivers of PF changes, which can help understand future trends of PF. This study develops a more comprehensive PF model by considering crop, livestock and aquatic food, and non-food goods, which covers the mainly phosphorus containing products consumed by human.

View Article and Find Full Text PDF

2019 will be the 350th anniversary of the discovery of phosphorus (P) by the alchemist Henning Brandt. This perspective traces the historical threads that P has weaved through the fabric of our society and identifies challenges to improve P stewardship in the future and for our future. A century after Brandt's discovery, P was identified in bone ash, which became the primary source of P until guano and ultimately rock P was mined to provide the various mineral formulations used today.

View Article and Find Full Text PDF

Accurate quantification of sources of phosphorus (P) entering the environment is essential for the management of aquatic ecosystems. P fluxes from mains water leakage (MWL-P) have recently been identified as a potentially significant source of P in urbanised catchments. However, both the temporal dynamics of this flux and the potential future significance relative to P fluxes from wastewater treatment works (WWT-P) remain poorly constrained.

View Article and Find Full Text PDF

This study provides a first national-scale assessment of the nutrient status of British headwater streams within the wider river network, by joint analysis of the national Countryside Survey Headwater Stream and Harmonised River Monitoring Scheme datasets. We apply a novel Nutrient Limitation Assessment methodology to explore the extent to which nutrients may potentially limit primary production in headwater streams and rivers, by coupling ternary assessment of nitrogen (N), phosphorus (P), and carbon (C) depletion, with N:P stoichiometry, and threshold P and N concentrations. P limitation was more commonly seen in the rivers, with greater prevalence of N limitation in the headwater streams.

View Article and Find Full Text PDF

This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance.

View Article and Find Full Text PDF
Article Synopsis
  • Significant increase in riverine soluble reactive phosphorus (SRP) loads to the Western Lake Erie Basin from three key rivers began in the early 2000s and has persisted over the last 12 years.
  • About 65% of this SRP load increase is due to elevated SRP delivery, while 35% is linked to higher runoff from changing weather patterns.
  • Long-term changes in agricultural practices, like reduced tillage and increased tile drainage, may have inadvertently led to higher SRP levels by promoting labile phosphorus fractions and enhancing soluble P transport.
View Article and Find Full Text PDF

Effective strategies to reduce phosphorus (P)-enrichment of aquatic ecosystems require accurate quantification of the absolute and relative importance of individual sources of P. In this paper, we quantify the potential significance of a source of P that has been neglected to date. Phosphate dosing of raw water supplies to reduce lead and copper concentrations in drinking water is a common practice globally.

View Article and Find Full Text PDF