Extant enzymes are not only highly efficient biocatalysts for a single, or a group of chemically closely related substrates but often have retained, as a mark of their evolutionary history, a certain degree of substrate ambiguity. We have exploited the substrate ambiguity of the ectoine hydroxylase (EctD), a member of the non-heme Fe(II)-containing and 2-oxoglutarate-dependent dioxygenase superfamily, for such a task. Naturally, the EctD enzyme performs a precise regio- and stereoselective hydroxylation of the ubiquitous stress protectant and chemical chaperone ectoine (possessing a six-membered pyrimidine ring structure) to yield -5-hydroxyectoine.
View Article and Find Full Text PDFHeterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself.
View Article and Find Full Text PDF