Publications by authors named "Jarrod Moss"

In complex tasks, high performers often have better strategies than low performers, even with similar amounts of practice. Relatively little research has examined how people form and change strategies in tasks that permit a large set of strategies. One challenge with such research is identifying strategies based on behavior.

View Article and Find Full Text PDF

Interruption interference refers to significant performance decreases that follow task interruption. Evidence has suggested that practicing interruption resumption reduces interruption interference as measured by the time required to resume the interrupted task. However, evidence has also indicated that interruption practice only improves resumption for the practiced pair of primary and interrupting tasks.

View Article and Find Full Text PDF

In fast-paced, dynamic tasks, the ability to anticipate the future outcome of a sequence of events is crucial to quickly selecting an appropriate course of action among multiple alternative options. There are two classes of theories that describe how anticipation occurs. Serial theories assume options are generated and evaluated one at a time, in order of quality, whereas parallel theories assume simultaneous generation and evaluation.

View Article and Find Full Text PDF

Discourse comprehension processes attempt to produce an elaborate and well-connected representation in the reader's mind. A common network of regions including the angular gyrus, posterior cingulate, and dorsal frontal cortex appears to be involved in constructing coherent representations in a variety of tasks including social cognition tasks, narrative comprehension, and expository text comprehension. Reading strategies that require the construction of explicit inferences are used in the present research to examine how this coherence network interacts with other brain regions.

View Article and Find Full Text PDF

Prior studies of mind wandering find the default network active during mind wandering, but these studies have yielded mixed results concerning the role of cognitive control brain regions during mind wandering. Mind wandering often interferes with reading comprehension, and prior neuroimaging studies of discourse comprehension and strategic reading comprehension have shown that there are at least two networks of brain regions that support strategic discourse comprehension: a domain-general control network and a network of regions supporting coherence-building comprehension processes. The present study was designed to further examine the neural correlates of mind wandering by examining mind wandering during strategic reading comprehension.

View Article and Find Full Text PDF

Neuroimaging studies of text comprehension conducted thus far have shed little light on the brain mechanisms underlying strategic learning from text. Thus, the present study was designed to answer the question of what brain areas are active during performance of complex reading strategies. Reading comprehension strategies are designed to improve a reader's comprehension of a text.

View Article and Find Full Text PDF

Two studies examine how the time at which problem solving is suspended relative to an impasse affects the impact of incidental hints. An impasse is a point in problem solving at which a problem solver is not making progress and does not know how to proceed. In both studies, work on remote associates problems was suspended before an impasse was reached, at the time an impasse was reached, or after a period of continued work during an impasse.

View Article and Find Full Text PDF

There have been a number of recent findings indicating that unsolved problems, or open goals more generally, influence cognition even when the current task has no relation to the task in which the goal was originally set. It was hypothesized that open goals would influence what information entered the problem-solving process. Three studies were conducted to establish the effect of open goals on the acquisition of problem-relevant information.

View Article and Find Full Text PDF

As engineers gain experience and become experts in their domain, the structure and content of their knowledge changes. Two studies are presented that examine differences in knowledge representation among freshman and senior engineering students. The first study examines recall of mechanical devices and chunking of components, and the second examines whether seniors represent devices in a more abstract functional manner than do freshmen.

View Article and Find Full Text PDF