Publications by authors named "Jarrod J Buffy"

Phospholamban (PLN) and sarcolipin (SLN) are two single-pass membrane proteins that regulate Ca2+-ATPase (SERCA), an ATP-driven pump that translocates calcium ions into the lumen of the sarcoplasmic reticulum, initiating muscle relaxation. Both proteins bind SERCA through intramembrane interactions, impeding calcium translocation. While phosphorylation of PLN at Ser-16 and/or Thr-17 reestablishes calcium flux, the regulatory mechanism of SLN remains elusive.

View Article and Find Full Text PDF

RF heating of solid-state biological samples is known to be a destabilizing factor in high-field NMR experiments that shortens the sample lifetime by continuous dehydration during the high-power cross-polarization and decoupling pulses. In this work, we describe specially designed, large volume, low-E 15N-1H solid-state NMR probes developed for 600 and 900 MHz PISEMA studies of dilute membrane proteins oriented in hydrated and dielectrically lossy lipid bilayers. The probes use an orthogonal coil design in which separate resonators pursue their own aims at the respective frequencies, resulting in a simplified and more efficient matching network.

View Article and Find Full Text PDF

Sarcolipin (SLN), a 31 amino acid integral membrane protein, regulates SERCA1a and SERCA2a, two isoforms of the sarco(endo)plasmic Ca-ATPase, by lowering their apparent Ca(2+) affinity and thereby enabling muscle relaxation. SLN is expressed in both fast-twitch and slow-twitch muscle fibers with significant expression levels also found in the cardiac muscle. SLN shares approximately 30% identity with the transmembrane domain of phospholamban (PLN), and recent solution NMR studies carried out in detergent micelles indicate that the two polypeptides bind to SERCA in a similar manner.

View Article and Find Full Text PDF

The preparation of hierarchically structured organosilicon microcapsules from commercially available starting materials is described. Using a microfluidic device, an emulsion of dichlorodiphenylsilane is formed in a continuous phase of aqueous glycerol. The silane droplets undergo hydrolysis, condensation, and crystallization within minutes to form self-assembled, core-shell microcapsules.

View Article and Find Full Text PDF

Sarcolipin (SLN) is an integral membrane protein that is expressed in both skeletal and cardiac muscle, where it inhibits SERCA (calcium ATPase) by lowering its apparent Ca2+ affinity in a manner similar to that of its homologue phospholamban (PLN). We use solution NMR to map the structural changes occurring within SLN upon interaction with the regulatory target, SERCA, co-reconstituting the two proteins in dodecylphosphocholine (DPC) detergent micelles, a system that preserves the native structure of SLN and the activity of SERCA, with the goal of comparing these interactions with those of the previously studied PLN-SERCA complex. Our analysis of the structural dynamics of SLN in DPC micelles shows this polypeptide to be partitioned into four subdomains: a short unstructured N terminus (residues 1-6), a short dynamic helix (residues 7-14), a more rigid helix (residues 15-26), and an unstructured C terminus (residues 27-31).

View Article and Find Full Text PDF

Organotin compounds or alkyltins are ubiquitous environmental toxins that have been implicated in cellular death. Unlike other xenobiotic compounds, such as organomercurials and organoleads, alkyltins activate apoptotic cascades at low concentrations. Trimethyltin (TMT) chloride is amongst the most toxic organotin compounds, and is known to selectively inflict injury to specific regions of the brain.

View Article and Find Full Text PDF

Aggregation or oligomerization is important for the function of many membrane peptides such as ion channels and antimicrobial peptides. However, direct proof of aggregation and the determination of the number of molecules in the aggregate have been difficult due to the lack of suitable high-resolution methods for membrane peptides. We propose a 19F spin diffusion magic-angle-spinning NMR technique to determine the oligomeric state of peptides bound to the lipid bilayer.

View Article and Find Full Text PDF

The interaction of a beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), with various lipid membranes is investigated by (31)P, (2)H, and (13)C solid-state NMR. Mixed lipid bilayers containing anionic lipids and cholesterol are used to mimic the bacterial and mammalian cell membranes, respectively. (31)P and (2)H spectra of macroscopically oriented samples show that PG-1 induces the formation of an isotropic phase in anionic bilayers containing phosphatidylglycerol.

View Article and Find Full Text PDF

RTD-1 is a cyclic beta-hairpin antimicrobial peptide isolated from rhesus macaque leukocytes. Using (31)P, (2)H, (13)C, and (15)N solid-state NMR, we investigated the interaction of RTD-1 with lipid bilayers of different compositions. (31)P and (2)H NMR of uniaxially oriented membranes provided valuable information about how RTD-1 affects the static and dynamic disorder of the bilayer.

View Article and Find Full Text PDF

The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.

View Article and Find Full Text PDF

The depth of insertion of an antimicrobial peptide, protegrin-1 (PG-1), in lipid bilayers is investigated using solid-state NMR. Paramagnetic Mn(2+) ions bind to the surface of lipid bilayers and induce distance-dependent dipolar relaxation of nuclear spins. By comparing the signal dephasing of the peptide with that of the lipids, whose segmental depths of insertion are known, we determined the depths of several residues of PG-1 in 1,2 dilauryl-sn-glycero-3-phosphotidylcholine (DLPC) bilayers.

View Article and Find Full Text PDF

The silicon backbone is all-trans in the crystal structure of perchloropolysilane [SiCl ] (see structure on the right). The Cl atoms can be substituted by nucleophiles to form polymers such as peralkoxy- and peraminopolysilanes.

View Article and Find Full Text PDF