This study evaluated the ability of generative large language models (LLMs) to detect speech recognition errors in radiology reports. A dataset of 3233 CT and MRI reports was assessed by radiologists for speech recognition errors. Errors were categorized as clinically significant or not clinically significant.
View Article and Find Full Text PDFObjectives: Non-contrast computed tomography of the brain (NCCTB) is commonly used to detect intracranial pathology but is subject to interpretation errors. Machine learning can augment clinical decision-making and improve NCCTB scan interpretation. This retrospective detection accuracy study assessed the performance of radiologists assisted by a deep learning model and compared the standalone performance of the model with that of unassisted radiologists.
View Article and Find Full Text PDFThis retrospective case-control study evaluated the diagnostic performance of a commercially available chest radiography deep convolutional neural network (DCNN) in identifying the presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies was sourced from community radiology clinics and hospitals in Australia and the USA, and was then ground-truth labelled for the presence, position, and type of line or tube from the consensus of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal tubes over the entire dataset, as well as within each subgroup, was evaluated.
View Article and Find Full Text PDFLimitations of the chest X-ray (CXR) have resulted in attempts to create machine learning systems to assist clinicians and improve interpretation accuracy. An understanding of the capabilities and limitations of modern machine learning systems is necessary for clinicians as these tools begin to permeate practice. This systematic review aimed to provide an overview of machine learning applications designed to facilitate CXR interpretation.
View Article and Find Full Text PDFImportance: Early detection of pneumothorax, most often via chest radiography, can help determine need for emergent clinical intervention. The ability to accurately detect and rapidly triage pneumothorax with an artificial intelligence (AI) model could assist with earlier identification and improve care.
Objective: To compare the accuracy of an AI model vs consensus thoracic radiologist interpretations in detecting any pneumothorax (incorporating both nontension and tension pneumothorax) and tension pneumothorax.
Correct catheter position is crucial to ensuring appropriate function of the catheter and avoid complications. This paper describes a dataset consisting of 50,612 image level and 17,999 manually labelled annotations from 30,083 chest radiographs from the publicly available NIH ChestXRay14 dataset with manually annotated and segmented endotracheal tubes (ETT), nasoenteric tubes (NET) and central venous catheters (CVCs).
View Article and Find Full Text PDFBackground: Chest x-rays are widely used in clinical practice; however, interpretation can be hindered by human error and a lack of experienced thoracic radiologists. Deep learning has the potential to improve the accuracy of chest x-ray interpretation. We therefore aimed to assess the accuracy of radiologists with and without the assistance of a deep-learning model.
View Article and Find Full Text PDFPurpose To examine Generative Visual Rationales (GVRs) as a tool for visualizing neural network learning of chest radiograph features in congestive heart failure (CHF). Materials and Methods A total of 103 489 frontal chest radiographs in 46 712 patients acquired from January 1, 2007, to December 31, 2016, were divided into a labeled data set (with B-type natriuretic peptide [BNP] result as a marker of CHF) and unlabeled data set (without BNP result). A generative model was trained on the unlabeled data set, and a neural network was trained on the encoded representations of the labeled data set to estimate BNP.
View Article and Find Full Text PDF