We conducted a case-control study to identify risk and protective factors during a cholera outbreak in Jijiga, Ethiopia, in June 2017. A case-patient was defined as anyone > 5 years old with at least three loose stools in 24 hours who was admitted to a cholera treatment center in Jijiga on or after June 16, 2017. Two controls were matched to each case by type of residency (rural or urban) and age group.
View Article and Find Full Text PDFBackground: Typhoid fever in the United States is acquired primarily through international travel by unvaccinated travelers. There is currently no typhoid vaccine licensed in the United States for use in children <2 years.
Methods: We reviewed Salmonella enterica serotype Typhi infections reported to the Centers for Disease Control and Prevention (CDC) and antimicrobial-resistance data on Typhi isolates in CDC's National Antimicrobial Resistance Monitoring System from 1999 through 2015.
Context: Variation in genes that cause maturity-onset diabetes of the young (MODY) has been associated with diabetes incidence and glycemic traits.
Objectives: This study aimed to determine whether genetic variation in MODY genes leads to differential responses to insulin-sensitizing interventions.
Design And Setting: This was a secondary analysis of a multicenter, randomized clinical trial, the Diabetes Prevention Program (DPP), involving 27 US academic institutions.
Context/objective: The variant rs13266634 in SLC30A8, encoding a β-cell-specific zinc transporter, is associated with type 2 diabetes. We aimed to identify other variants in SLC30A8 that increase diabetes risk and impair β-cell function, and test whether zinc intake modifies this risk. DESIGN/OUTCOME: We sequenced exons in SLC30A8 in 380 Diabetes Prevention Program (DPP) participants and identified 44 novel variants, which were genotyped in 3445 DPP participants and tested for association with diabetes incidence and measures of insulin secretion and processing.
View Article and Find Full Text PDFCommon genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention.
View Article and Find Full Text PDFWeight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.
View Article and Find Full Text PDFWe formed the GEnetics of Nephropathy-an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K.
View Article and Find Full Text PDFCirculating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.
View Article and Find Full Text PDFAfrican Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.
View Article and Find Full Text PDFInhibition of the endocannabinoid receptor CB1 improves insulin sensitivity, lowers glycemia, and slows atherosclerosis. We analyzed whether common variants in the gene encoding CB1, CNR1, are associated with insulin resistance, risk of type 2 diabetes (T2D) or coronary heart disease (CHD). We studied 2,411 participants of the Framingham Offspring Study (mean age 60 years, 52% women) for quantitative traits and CHD, and the Framingham SHARe database for T2D risk.
View Article and Find Full Text PDFContext: Glucokinase regulatory protein (GCKR) regulates the trafficking and enzymatic activity of hepatic glucokinase, the rate-limiting enzyme in glycogen synthesis and glycolysis. The intronic single-nucleotide polymorphism (SNP) rs780094 (intron 16) and the missense SNP rs1260326 (P446L) in the GCKR gene are strongly associated with increased circulating triglyceride and C-reactive protein levels and, paradoxically, reductions in diabetes incidence, fasting glucose levels, and insulin resistance. OBJECTIVE, SETTING, AND PATIENTS: We sought to replicate these associations and evaluate interactions with lifestyle and metformin interventions in the multiethnic Diabetes Prevention Program (DPP).
View Article and Find Full Text PDFObjective: Over 30 loci have been associated with risk of type 2 diabetes at genome-wide statistical significance. Genetic risk scores (GRSs) developed from these loci predict diabetes in the general population. We tested if a GRS based on an updated list of 34 type 2 diabetes-associated loci predicted progression to diabetes or regression toward normal glucose regulation (NGR) in the Diabetes Prevention Program (DPP).
View Article and Find Full Text PDFObjective: Genome-wide association studies have begun to elucidate the genetic architecture of type 2 diabetes. We examined whether single nucleotide polymorphisms (SNPs) identified through targeted complementary approaches affect diabetes incidence in the at-risk population of the Diabetes Prevention Program (DPP) and whether they influence a response to preventive interventions.
Research Design And Methods: We selected SNPs identified by prior genome-wide association studies for type 2 diabetes and related traits, or capturing common variation in 40 candidate genes previously associated with type 2 diabetes, implicated in monogenic diabetes, encoding type 2 diabetes drug targets or drug-metabolizing/transporting enzymes, or involved in relevant physiological processes.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR.
View Article and Find Full Text PDFGlucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.
View Article and Find Full Text PDFMineralization of bone matrix is an important process in bone formation; thus defects in mineralization have been implicated in bone mineral density (BMD) and bone structure alterations. Three central regulators of phosphate balance, ALPL, ANKH, and ENPP1, are central in the matrix mineralization process; therefore, the genes encoding them are considered important candidates genes for BMD and bone geometry. To test for an association between these three candidate genes and BMD and bone geometry traits, 124 informative singlenucleotide polymorphisms (SNPs) were selected and genotyped in 1513 unrelated subjects from the Framingham offspring cohort.
View Article and Find Full Text PDFPharmacologic blockade of the endocannabinoid receptor 1 leads to weight loss and an improved metabolic risk profile in overweight and obese individuals. We hypothesize that common genetic variants in the CNR1 (encoding endocannabinoid receptor 1) and FAAH genes (encoding fatty acid amide hydrolase, a key enzyme hydrolyzing endocannabinoids) are associated with adiposity traits. We genotyped 18 single-nucleotide polymorphisms (SNPs) in the CNR1 gene and 9 SNPs in the FAAH gene in 2,415 Framingham Offspring Study participants (mean age 61 +/- 10 years; 52.
View Article and Find Full Text PDFObjective: The RETN gene encodes the adipokine resistin. Associations of RETN with plasma resistin levels, type 2 diabetes, and related metabolic traits have been inconsistent. Using comprehensive linkage disequilibrium mapping, we genotyped tag single nucleotide polymorphisms (SNPs) in RETN and tested associations with plasma resistin levels, risk of diabetes, and glycemic traits.
View Article and Find Full Text PDFBackground: Multiple genetic loci have been convincingly associated with the risk of type 2 diabetes mellitus. We tested the hypothesis that knowledge of these loci allows better prediction of risk than knowledge of common phenotypic risk factors alone.
Methods: We genotyped single-nucleotide polymorphisms (SNPs) at 18 loci associated with diabetes in 2377 participants of the Framingham Offspring Study.
Context: Insulin resistance is an important feature of type 2 diabetes. Ectoenzyme nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling, and a recent meta-analysis reported a nominal association between the Q allele in the K121Q (rs1044498) single nucleotide polymorphism in its gene ENPP1 and type 2 diabetes. OBJECTIVE AND INTERVENTION: We examined the impact of this polymorphism on diabetes incidence as well as insulin secretion and sensitivity at baseline and after treatment with a lifestyle intervention or metformin vs.
View Article and Find Full Text PDFObjective: Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes.
Research Design And Methods: Participants in the Framingham Offspring Study (n = 2,543, 53% women) were measured for glycemic phenotypes and incident diabetes over 28 years of follow-up; adiponectin levels were quantified at exam 7.
Objective: Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo.
Research Design And Methods: We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence.
Objective: A recent meta-analysis demonstrated a nominal association of the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) K-->Q missense single nucleotide polymorphism (SNP) at position 121 with type 2 diabetes. We set out to confirm the association of ENPP1 K121Q with hyperglycemia, expand this association to insulin resistance traits, and determine whether the association stems from K121Q or another variant in linkage disequilibrium with it.
Research Design And Methods: We characterized the haplotype structure of ENPP1 and selected 39 tag SNPs that captured 96% of common variation in the region (minor allele frequency > or =5%) with an r(2) value > or =0.
Objective: Functional studies suggest that the nonsynonymous K121Q polymorphism in the ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) may confer susceptibility to insulin resistance; genetic evidence on its effect on type 2 diabetes, however, has been conflicting. We therefore conducted a new meta-analysis that includes novel unpublished data from the ENPP1 Consortium and recent negative findings from large association studies to address the contribution of K121Q to type 2 diabetes.
Research Design And Methods: After a systematic review of the literature, we evaluated the effect of ENPP1 K121Q on diabetes risk under three genetic models using a random-effects approach.