High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging.
View Article and Find Full Text PDFWe numerically investigate the regime of nonlinear pulse compression at mid-IR wavelengths in a multi-pass cell (MPC) containing a dielectric plate. This post-compression setup allows for ionization-free spectral broadening and self-compression while mitigating self-focusing effects. We find that self-compression occurs for a wide range of MPC and pulse parameters and derive scaling rules that enable its optimization.
View Article and Find Full Text PDFThe generation of ultrashort visible energetic pulses is investigated numerically by the nonlinear propagation of infrared necklace beams in capillaries. We have developed a (3+1)D model that solves the nonlinear propagation equation, including the complete spatio-temporal dynamics and the azimuthal dependence of these structured beams. Due to their singular nonlinear propagation, the spectrum broadening inside the capillary extends to the visible region in a controlled way, despite the high nonlinearity, avoiding self-focusing.
View Article and Find Full Text PDFThe first equation in [Opt. Express26, 6345 (2018)] contains an error and is corrected in this erratum.
View Article and Find Full Text PDFSoliton self-compression is demonstrated during the propagation of high spatial modes in hollow core fibers in the near-infrared spectral region, taking advantage of their negative dispersion response. We have found that there is always an optimum spatial mode to observe this phenomenon, compressing the pulses down to the single-cycle regime without needing any external compression device and with a consequent increase in the output peak power. Our result is relevant for any ultrashort laser application in which few- or single-cycle pulses are crucial.
View Article and Find Full Text PDFIntense few- and single-cycle pulses are powerful tools in different fields of science Today, third- and higher-order terms in the remnant spectral phase of the pulses remain a major obstacle for obtaining high-quality few- and single-cycle pulses from in-line post-compression setups. In this Letter, we show how input pulse shaping can successfully be applied to standard post-compression setups to minimize the occurrence of high-order phase components during nonlinear propagation and to directly obtain pulses with durations down to 3 fs. Furthermore, by combining this pulse shaping of the input pulse with new-generation broadband chirped mirrors and material addition for remnant third-order phase correction, pulses down to 2.
View Article and Find Full Text PDFA numerical study of reflectivity and transmittivity of an ensemble of short oriented linear Frenkel chains, which forms a thin film with a thickness of the order of an optical wavelength, is carried out. The eigenstates of a single chain are considered to be of a collective (excitonic) origin. A distribution of chains over lengths resulting in inhomogeneous broadening of the exciton optical transition is taken into account.
View Article and Find Full Text PDF