Publications by authors named "Jaroslaw Kroliczewski"

Reducing the emission of global warming gases currently remains one of the strategic tasks. Therefore, the objective of our work was to determine the effect of saponite clay on fermentation in the rumen of cows. The pH, total gas production, CH, and volatile fatty acid (VFA) production in ruminal fluid was determined in vitro.

View Article and Find Full Text PDF

Equine metabolic syndrome (EMS) is a significant global health concern in veterinary medicine. There is increasing interest in utilizing molecular agents to modulate hepatocyte function for potential clinical applications. Recent studies have shown promising results in inhibiting protein tyrosine phosphatase (PTP1B) to maintain cell function in various models.

View Article and Find Full Text PDF

The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch.

View Article and Find Full Text PDF

The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression.

View Article and Find Full Text PDF

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.

View Article and Find Full Text PDF

Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s).

View Article and Find Full Text PDF

Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor.

View Article and Find Full Text PDF

Rational drug design and in vitro pharmacology profiling constitute the gold standard in drug development pipelines. Problems arise, however, because this process is often difficult due to limited information regarding the complete identification of a molecule's biological activities. The increasing affordability of genome-wide next-generation technologies now provides an excellent opportunity to understand a compound's diverse effects on gene regulation.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress conditions promote a cellular adaptive mechanism called the unfolded protein response (UPR) that utilizes three stress sensors, inositol-requiring protein 1, protein kinase RNA-like ER kinase, and activating transcription factor 6. These sensors activate a number of pathways to reduce the stress and facilitate cell survival. While much is known about the mechanisms involved that modulate apoptosis during chronic stress, less is known about the transition between the prosurvival and proapoptotic factors that determine cell fate.

View Article and Find Full Text PDF

During hypoxia, a cellular adaptive response activates hypoxia-inducible factors (HIFs; HIF-1 and HIF-2) that respond to low tissue-oxygen levels and induce the expression of a number of genes that promote angiogenesis, energy metabolism, and cell survival. HIF-1 and HIF-2 regulate endothelial cell (EC) adaptation by activating gene-signaling cascades that promote endothelial migration, growth, and differentiation. An HIF-1 to HIF-2 transition or switch governs this process from acute to prolonged hypoxia.

View Article and Find Full Text PDF

Solid tumor microenvironments are often subjected to various levels of hypoxia. Although regulation of gene expression has been examined extensively, most studies have focused on prolonged hypoxia. The tumor microenvironment, however, experiences waves of hypoxia and reoxygenation that stimulate the expression of pro-angiogenic factors that promote blood vessel formation.

View Article and Find Full Text PDF

Small noncoding microRNAs (miRNAs) post-transcriptionally regulate a large portion of the human transcriptome. miRNAs have been shown to play an important role in the unfolded protein response (UPR), a cellular adaptive mechanism that is important in alleviating endoplasmic reticulum (ER) stress and promoting cell recovery. Another class of small noncoding RNAs, the Piwi-interacting RNAs (piRNAs) together with PIWI proteins, was originally shown to play a role as repressors of germline transposable elements.

View Article and Find Full Text PDF

Background: Dietary fat is considered one of the most important factors associated with blood lipid metabolism and plays a significant role in the cause and prevention of atherosclerosis that has been widely accepted as an inflammatory disease of the vascular system. The aim of the present study was to evaluate the effect of genetically modified flaxseed (W86) rich in phenylpropanoid compounds and hydrolysable tannin in high cholesterol-induced atherosclerosis rabbit models compared to parental cultivar Linola.

Methods: Twenty-Eight White New Zealand white rabbits aged 6 months were randomly divided into four groups, control group, high cholesterol group (10 g/kg), Linola flaxseed group (100 g/kg) and W86 flaxseed group (100 g/kg).

View Article and Find Full Text PDF

Background: Hypoxic conditions induce the expression of hypoxia-inducible factors (HIFs) that allow cells to adapt to the changing conditions and alter the expression of a number of genes including the cystic fibrosis transmembrane conductance regulator (CFTR). is a low abundance mRNA in airway epithelial cells even during normoxic conditions, but during hypoxia its mRNA expression decreases even further.

Methods: In the current studies, we examined the kinetics of hypoxia-induced changes in mRNA and protein levels in two human airway epithelial cell lines, Calu-3 and 16HBE14o-, and in normal primary bronchial epithelial cells.

View Article and Find Full Text PDF

Background: In thylakoid membrane, each monomer of the dimeric complex of cytochrome b f is comprised of eight subunits that are both nucleus- and plastid-encoded. Proper cytochrome b f complex integration into the thylakoid membrane requires numerous regulatory factors for coordinated transport, insertion and assembly of the subunits. Although, the chloroplast-encoded cytochrome b f subunit IV (PetD) consists of three transmembrane helices, the signal and the mechanism of protein integration into the thylakoid membrane have not been identified.

View Article and Find Full Text PDF

The role of microRNAs in controlling angiogenesis is recognized as a promising therapeutic target in both cancer and cardiovascular disorders. However, understanding a miRNA's pleiotropic effects on angiogenesis is a limiting factor for these types of therapeutic approaches. Using genome-wide next-generation sequencing, we examined the role of an antiangiogenic miRNA, miR-200b, in primary human endothelial cells.

View Article and Find Full Text PDF

microRNAs (miRNAs) are nowadays recognized as an essential component of gene regulatory networks. Furthermore, deregulation of miRNAs expression often contributes to human pathologies. Recently, a substantial number of single nucleotide polymorphism (SNPs) and rare mutations within pri-, pre- and mature miRNA sequences have been reported.

View Article and Find Full Text PDF

Synonymous or silent mutations are often overlooked in genetic analyses for disease-causing mutations unless they are directly associated with potential splicing defects. More recent studies, however, indicate that some synonymous single polynucleotide polymorphisms (sSNPs) are associated with changes in protein expression, and in some cases, protein folding and function. The impact of codon usage and mRNA structural changes on protein translation rates and how they can affect protein structure and function is just beginning to be appreciated.

View Article and Find Full Text PDF

Background: The health of chickens and the welfare of poultry industry are central to the efforts of addressing global food security. Therefore, it is essential to study chicken immunology to maintain and improve its health and to find novel and sustainable solutions. This paper presents a study on investigation of the effect of root (SBR) on the immune response of broiler chicken, especially on lymphocytes and heterophils reactivity, regarding their contribution to the development of immunity of the chickens.

View Article and Find Full Text PDF

The cytochrome b f complex occupies an electrochemically central position in the electron-transport chain bridging the photosynthetic reaction center of PS I and PS II. In plants, the subunits of these thylakoid membrane protein complexes are both chloroplast and nuclear encoded. How the chloroplast-encoded subunits of multi-spanning cytochrome b are targeted and inserted into the thylakoid membrane is not fully understood.

View Article and Find Full Text PDF

Background: Flaxseed is an alternative to marine products that provide the traditional dietary sources of ω-fatty acids. A new genotype of flax, W92, is rich in natural antioxidants as well as having a reduced content of α-linolenic acid and therefore shows decreased susceptibility to fat oxidation. The objective of this study was to evaluate the effect of a diet supplemented with W92 flaxseed on hematological and biochemical blood indices.

View Article and Find Full Text PDF

We analysed the interplay between the cpSecY, cpSRP54 and the chloroplast-encoded cytochrome b6 via isolation of chloroplast ribosome nascent chain complexes and the use of cross-linking factors, antibodies and mass spectroscopy analyses. We showed that the cytochrome b6 nascent polypeptide complex is tightly associated with ribosomes and that the translation of cytochrome b6 was discontinuous. The causes of ribosome pausing and the functional significance of this phenomenon may be related to proper protein folding, insertion into thylakoid membranes and the association of cofactors during this process.

View Article and Find Full Text PDF

The present paper is a systematic, comparative study on the reconstitution of an apocytochrome b6 purified from a heterologous system using a detergent-free method and reconstitution into liposomes performed using three different detergents: SDS, Triton X-100 and DM, and two methods of detergent removal by dialysis and using Bio-Beads. The product size, its distribution and zeta potential, and other parameters were monitored throughout the process. We found that zeta potential of proteoliposomes is correlated with reconstitution efficiency and, as such, can serve as a quick and convenient quality control for reconstitution experiments.

View Article and Find Full Text PDF

In the stroma compartment, several pathways are used for integration/translocation of chloroplast proteins into or across the thylakoid membrane. In this study we investigated the mode of incorporation of the chloroplast-encoded cytochrome b(6) into the bacterial membrane. Cytochrome b(6) naturally comprises of four transmembrane helices (A,B,C,D) and contains two b-type hemes.

View Article and Find Full Text PDF

Both photosynthetic cytochrome b6f complex, and respiratory cytochrome bc1 belong to the family of cytochrome bc complexes. Both protein supercomplexes participate in the transport of electrons, proton translocation through the biological membrane, and they catalyze chinon oxidation as well. The function, composition, spatial organization and biosynthesis of cytochrome b6f complex has been being the subject of research for years.

View Article and Find Full Text PDF