Publications by authors named "Jaroslaw Gajda"

A complementary approach for studying structural details of complex solid materials formed by symmetrical and unsymmetrical dichalcogenides, which employs both X-ray diffraction (XRD) and solid-state NMR (SS NMR), is presented. The new diagnostic technique allows reversible crystallographic space group change and very subtle distortion of host geometry to be followed during guest migration in the crystal lattice. Bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D-galactopyranosyl)]thiophosphoryl selenenyl sulfide, a representative of wheel-and-axle host (WAAH) molecules, can be synthesized in the solid state by grinding and gentle heating of disulfide 1 and diselenide 2.

View Article and Find Full Text PDF

L-selenomethionine 1 crystallizes in P2(1) space group with two molecules in the asymmetric unit. Solid-state NMR spectroscopy is used for searching of structure and dynamics of 1 in the crystal lattice. The distinct molecular motion of side chains for A and B molecules of 1 is apparent from measurements of relaxation parameters (1H 1rho, 13C T1) and analysis of CSA data (2D-PASS experiment).

View Article and Find Full Text PDF

In this work we have tested applicability of the commonly used double quantum recoupling sequence POST-C7 to study of (31)P-(31)P geometrical constraints for phosphoroorganic model compounds with different chemical shift anisotropy (CSA) and distinct molecular dynamics in the crystal lattice. Our results clearly show that even with large CSA, POST-C7 gives good efficiency of (31)P double-quantum excitations. Moreover, large amplitude molecular motion only slightly disturb (31)P build-up curve.

View Article and Find Full Text PDF

Differential scanning calorimetry (DSC) and low-temperature X-ray diffraction studies showed that 2-thio-(5,5-dimethyl-1,3,2-dioxaphosphorinanyl)2'-oxo-dineopentyl-thiophosphate (compound 1) undergoes reversible phase transition at 203 K related to the change of symmetry of the crystallographic unit. Solid state NMR spectroscopy was used to establish the dynamic processes of aliphatic groups and the phosphorus skeleton. 13C and 31P variable temperature NMR studies as well as T1 and T1rho measurements of relaxation times revealed the different mode of molecular motion for each neopentyl residue directly bonded to phosphorus.

View Article and Find Full Text PDF