Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity.
View Article and Find Full Text PDFBiodegradable metals based on zinc are being developed to serve as temporary arterial scaffolding. Although the inclusion of copper is becoming more prevalent for grain refinement in zinc alloys, the biological activity of the copper component has not been well investigated. Here, two ZnCu alloys (0.
View Article and Find Full Text PDFTMS 2023 152nd Annu Meet Exhib (2023)
February 2023
A new series of zinc alloys is in development for bioresorbable stent implantation to alleviate the current materials' long-term complications. Characterization and optimization of the microstructure and corresponding mechanical properties during manufacturing stages will help researchers meet the required values. In this study, the effect of hot extrusion on the Zn-Ag-Mn-Cu-Zr-Ti alloy is characterized.
View Article and Find Full Text PDFCurr Opin Biomed Eng
December 2022
To combat the long-term side effects associated with present-generation drug-eluting stents and provide opportunities for repeat scaffolding of plaqued arteries and treatment of coarctation of the aorta in infants and children, a new generation of bioresorbable stents has been introduced. Stents made of bioresorbable materials are corroded and absorbed by the body after completing their task as vascular scaffolding, allowing the stented arteries to restore their normal function. The concept is achieved by engineering stents that retain mechanical properties and integrity for at least 6-12 months before being broken down, metabolized, and harmlessly excreted by the body, leaving the treated vessel with a healthy endothelium, normal vasomotion, and free of the implant.
View Article and Find Full Text PDFAdhesion of a liquid droplet to a solid surface is a result of solid surface interactions with surrounding fluids, affected by its wettability and morphology. Unfortunately, the direct measurements of adhesion forces are rarely reported in the scientific literature, especially for solids with curvatures. In this study, by using a high-sensitivity microelectronic mechanical balance which vertically deposits and then pulls liquid droplets, the spreading and adhesion forces for water and ethylene glycol droplets on spherical surfaces of polyethylene terephthalate (PET) with radii of curvature from 2 to 8 mm were recorded.
View Article and Find Full Text PDFZinc-based alloys are potential candidates for bioabsorbable metallic devices due to their application-appropriate corrosion rates and biocompatibility. However, strain softening and rate sensitivity in tensile testing remain as challenges for their use in load bearing applications. In this study, three different Zn-xCu-yMn-0.
View Article and Find Full Text PDFThe metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition.
View Article and Find Full Text PDFZinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention.
View Article and Find Full Text PDFZinc (Zn) has emerged as a promising bioresorbable stent material due to its satisfactory corrosion behavior and excellent biocompatibility. However, for load bearing implant applications, alloying is required to boost its mechanical properties as pure Zn exhibits poor strength. Unfortunately, an increase in inflammation relative to pure Zn is a commonly observed side-effect of Zn alloys.
View Article and Find Full Text PDFFor applications involving droplet detachment from solid surfaces, it is vital to study the droplet characteristics (e.g., contact angle and base width) when the droplet is experiencing the maximum force that detaches the droplet (maximum adhesion state).
View Article and Find Full Text PDFThe mobility of a fakir state droplet on a structured surface is fundamentally determined by the effective length of a microscopic contact line. However, it is largely unknown how the surface topography determines the effective contact line length. Based on the direct measurement of droplet adhesion force and the visualization of contact line, this work shows that effective contact line length is topography dependent as opposed to prior notion.
View Article and Find Full Text PDFThe detrimental effect of natural aging on mechanical properties of zinc alloys restricts their application as bioresorbable medical implants. In this study, aging of Zn-0.05Mg alloy and the effect of 0.
View Article and Find Full Text PDFBiodegradable arterial implants based on zinc have been found to suppress neointimal hyperplasia, suggesting that biodegradable materials containing zinc may be used to construct vascular implants with a reduced rate of restenosis. However, the molecular mechanism has remained unclear. In this report, we show that zinc-containing materials can be used to prevent neointimal formation when implanted into the rat aorta.
View Article and Find Full Text PDFAdvances made in fabrication of patterned surfaces with well-defined dimensions of topographic features and their lateral dissemination drive the progress in interpretation of liquid spreading, adhesion, and retreat on engineered solid surfaces. Despite extensive studies on liquid droplet spreading and adhesion on textured surfaces in recent years, conformation of the three-phase contact line and its effect on macroscopic contact angle and droplet adhesion remain the focus of intensive debate. Here, we investigate the effect of surface topography on the adhesion force of Cassie-Baxter-state droplets on concentric ring-textured hydrophobic surfaces having rings with lateral dimensions of 5, 10, and 45 μm and separated by 5, 6, and 7 μm trenches, respectively, with fixed depth of 15 μm.
View Article and Find Full Text PDFZn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.
View Article and Find Full Text PDFIn this study, the effect of grain size and precipitates on tensile properties of Zn-1.0Cu alloy were investigated. The alloy was cold rolled and annealed to manipulate the grain size and precipitation of CuZn particles at grain boundaries.
View Article and Find Full Text PDFZinc (Zn)-based biodegradable metals have been widely investigated for cardiovascular stent and orthopedic applications. However, the effect of Zn surface features on adverse biological responses has not been well established. Here, we hypothesized that a metallic zinc implant's surface oxide film character may critically influence early neointimal growth and development.
View Article and Find Full Text PDFZinc alloy development and characterization for vascular stent application has been facilitated by many standardized and inexpensive methods. In contrast, overly simplistic in vitro approaches dominate the preliminary biological testing of materials. In 2012, our group introduced a metal wire implantation model in rats as a cost effective and realistic approach for the biocompatibility evaluation of degradable materials in the vascular environment.
View Article and Find Full Text PDFAdv Colloid Interface Sci
May 2019
A contact angle observed for a liquid-solid system is not necessarily a unique value and a few different contact angles need to be carefully considered in relation to liquid spreading, adhesion and phase separation. Despite the conceptual simplicity of the contact angle and over 200 years of investigation, interpretations of experimental contact angles remain controversial, and mistakes are quite common. Here, the physics behind equilibrium contact angles are restated and their misuse in modern literature is briefly discussed.
View Article and Find Full Text PDFSpontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions.
View Article and Find Full Text PDFUnlabelled: The search for biodegradable metals with mechanical properties equal or higher to those of currently used permanent biomaterials, such as stainless steels, cobalt chromium and titanium alloys, desirable in vivo degradation rate and uniform corrosion is still an open challenge. Magnesium (Mg), iron (Fe) and zinc (Zn)-based alloys have been proposed as biodegradable metals for medical applications. Over the last two decades, extensive research has been done on Mg and Fe.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2018
It is still an open challenge to find a biodegradable metallic material exhibiting sufficient mechanical properties and degradation behavior to serve as an arterial stent. In this study, Zn-Mg alloys of 0.002 (Zn-002Mg), 0.
View Article and Find Full Text PDFJ Mater Sci Mater Med
September 2017
Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and gas embolism risks. Fe based alloys produce voluminous corrosion products that have a detrimental effect on neighboring cells and extracellular matrix.
View Article and Find Full Text PDF