We have prepared silica matrix with hexagonal symmetry of pores (SBA-15) and loaded it with anticancer drug 5-Fluorouracil (5-FU) to promote it as a drug delivery system. GdO nanoparticles were incorporated into the matrix to enhance nanosystems applicability as contrast agent for MRI, thus enabled this nanocomposite to be used as multifunctional nano-based therapeutic agent. Drug release profile was obtained by UV-VIS spectroscopy, and it indicates the prolongated release of 5-FU during the first hours and the total release after 5 h.
View Article and Find Full Text PDFIn this study, we describe the magnetic and structural properties and cytotoxicity of drug delivery composite (DDC) consisting of hexagonally ordered mesoporous silica, iron oxide magnetic nanoparticles (FeO), and the drug naproxen (Napro). The nonsteroidal anti-inflammatory drug (NSAID) naproxen was adsorbed into the pores of MCM-41 silica after the ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) encapsulation. Our results confirm the suppression of the Brownian relaxation process caused by a "gripping effect" since the rotation of the whole particle encapsulated in the porous system of mesoporous silica was disabled.
View Article and Find Full Text PDFIn this work we describe the relationship between surface modification of hexagonally ordered mesoporous silica SBA-15 and loading/release characteristics of nonsteroidal anti-inflammatory drug (NSAID) naproxen. Mesoporous silica (MPS) was modified with 3-aminopropyl, phenyl and cyclohexyl groups by grafting method. Naproxen was adsorbed into pores of the prepared MPS from ethanol solution using a solvent evaporation method.
View Article and Find Full Text PDFIn this work, we have prepared and investigated a redox-responsive drug delivery system (DDS) based on a porous carrier. Doxorubicin (DOX), a chemotherapy medication for treatment of different kinds of cancer, was used as a model drug in the study. DOX was loaded in ordered hexagonal mesoporous silica SBA-15, a nanoporous material with good biocompatibility, stability, large pore size and specific surface area ( = 908 m g, = 0.
View Article and Find Full Text PDF