Publications by authors named "Jaroslav Trnka"

The amplituhedron provides, via geometric means, the all-loop integrand of scattering amplitudes in maximally supersymmetric Yang-Mills theory. Unfortunately, dimensional regularization, used conventionally for integration, breaks the beautiful geometric picture. This motivates us to propose a "deformed" amplituhedron.

View Article and Find Full Text PDF

In this Letter, we derive new expressions for tree-level graviton amplitudes in N=8 supergravity from Britto-Cachazo-Feng-Witten (BCFW) recursion relations combined with new types of bonus relations. These bonus relations go beyond the famous 1/z^{2} behavior under a large BCFW shift and use knowledge about certain zeros of graviton amplitudes in collinear kinematics. This extra knowledge can be used in the context of global residue theorems by writing the amplitude in a special form using canonical building blocks.

View Article and Find Full Text PDF

We give a prescriptive representation of all-multiplicity two-loop maximally-helicity-violating (MHV) amplitude integrands in fully-color-dressed (nonplanar) maximally supersymmetric Yang-Mills theory.

View Article and Find Full Text PDF

In this Letter we discuss new soft theorems for the Goldstone-boson amplitudes with nonvanishing soft limits. The standard argument is that the nonlinearly realized shift symmetry leads to the vanishing of scattering amplitudes in the soft limit, known as the Adler zero. This statement involves certain assumptions of the absence of cubic vertices and the absence of linear terms in the transformations of fields.

View Article and Find Full Text PDF

In this Letter we compute a canonical set of cuts of the integrand for maximally helicity violating amplitudes in planar N=4 supersymmetric Yang-Mills theory, where all internal propagators are put on shell. These "deepest cuts" probe the most complicated Feynman diagrams and on-shell processes that can possibly contribute to the amplitude, but are also naturally associated with remarkably simple geometric facets of the amplituhedron. The recent reformulation of the amplituhedron in terms of combinatorial geometry directly in the kinematic (momentum-twistor) space plays a crucial role in understanding this geometry and determining the cut.

View Article and Find Full Text PDF

We present a bottom-up construction of vector effective field theories using the infrared structure of scattering amplitudes. Our results employ two distinct probes of soft kinematics: multiple soft limits and single soft limits after dimensional reduction applicable in four and general dimensions, respectively. Both approaches uniquely specify the Born-Infeld (BI) model as the only theory of vectors completely fixed by certain infrared conditions which generalize the Adler zero for pions.

View Article and Find Full Text PDF

We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n-1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance.

View Article and Find Full Text PDF

We derive the first ever on-shell recursion relations applicable to effective field theories. Based solely on factorization and the soft behavior of amplitudes, these recursion relations employ a new rescaling momentum shift to construct all tree-level scattering amplitudes in the nonlinear sigma model, Dirac-Born-Infeld theory, and the Galileon. Our results prove that all theories with enhanced soft behavior are on-shell constructible.

View Article and Find Full Text PDF

We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory.

View Article and Find Full Text PDF

We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic singularities and is free of any poles at infinity--properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA).

View Article and Find Full Text PDF