The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image.
View Article and Find Full Text PDFThis paper describes the methodology of combining experimental measurements with mathematical-physics analyses in the investigation of flow in the aperture and nozzle. The aperture and nozzle separate the differentially pumped chamber from the specimen chamber in an environmental scanning electron microscope (ESEM). Experimental measurements are provided by temperature and pressure sensors that meet the demanding conditions of cryogenic temperature zones and low pressures.
View Article and Find Full Text PDFThis study reports the development of selected indicators affecting changes in food quality and safety of selected long-life canned (Szeged goulash, canned chicken meat, pork pâté, canned tuna fish) and dehydrated (instant goulash soup) food during a two-year storage experiment at four different temperatures. The storage temperatures were selected to represent Arctic (−18 °C), temperate (5 °C), subtropical (25 °C) and tropical (40 °C) climatic zones where such food is likely to be stored during, for example, humanitarian and military missions. Microorganism amounts below the detection limit (p < 0.
View Article and Find Full Text PDF