Publications by authors named "Jaroslav Pavel"

Spontaneous recovery of lost motor functions is relative fast in rodent models after inducing a very mild/moderate spinal cord injury (SCI), and this may complicate a reliable evaluation of the effectiveness of potential therapy. Therefore, a severe graded (30 g, 40 g and 50 g) weight-compression SCI at the Th9 spinal segment, involving an acute mechanical impact followed by 15 min of persistent compression, was studied in adult female Wistar rats. Functional parameters, such as spontaneous recovery of motor hind limb and bladder emptying function, and the presence of hematuria were evaluated within 28 days of the post-traumatic period.

View Article and Find Full Text PDF

We previously reported NO/sGC signaling in the upper respiratory pathway, receiving input from the respiratory neurons of the brainstem to phrenic motoneurons in the C3-C6 spinal cord. In order to assess whether innervation of the neuromuscular junction (NMJ) at the diaphragm is modulated by sGC/cGMP signaling, we performed unilateral 8-day continuous ligation of the phrenic nerve in rats. We examined sGCβ1 within the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm) and the cGMP level in the contra- and ipsilateral hemidiaphragm.

View Article and Find Full Text PDF

In addition to behavioral testing, the efficacy of neuroprotective therapies applied after spinal cord injury (SCI) is commonly evaluated by means of histological quantification of spared neural tissue. The primary insult itself, but mainly the pathological processes of secondary injury are the underlying causes of spinal tissue degeneration, the extent of which depends on the injury severity and post-injury time. Under-estimation of tissue loss due to spinal cord shrinkage and subjective evaluation (impeding reproducibility) are substantial factors that negatively affect the final results.

View Article and Find Full Text PDF

The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group).

View Article and Find Full Text PDF

The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.

View Article and Find Full Text PDF

This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact).

View Article and Find Full Text PDF

To clarify the role of Angiotensin II in the regulation of sensory signaling, we characterized the AT expression in neuronal subpopulation of lower lumbar dorsal root ganglia under normal conditions and its alteration in neuropathic pain model. The characterization of AT expression was done under control and after the chronic constriction injury induced by four loose ligatures of the sciatic nerve representing the model of posttraumatic painful peripheral neuropathy. Major Angiotensin II receptor type was expressed in approximately 43 % of small-sized and 62 % of large-sized neurons in control.

View Article and Find Full Text PDF

Background Context: The loss of descending control after spinal cord injury (SCI) and incessant stimulation of Ia monosynaptic pathway, carrying proprioceptive impulses from the muscles and tendons into the spinal cord, evoke exaggerated α-motoneuron activity leading to increased reflex response. Previous results from our laboratory have shown that Ia monosynaptic pathway is nitrergic.

Purpose: The aim of this study was to find out whether nitric oxide produced by neuronal nitric oxide synthase (nNOS) plays a role in setting the excitability of α-motoneurons after thoracic spinal cord transection.

View Article and Find Full Text PDF

The interruption of supraspinal input to the spinal cord leads to motor dysfunction and the development of spasticity. Clinical studies have shown that Baclofen (a GABAB agonist), while effective in modulating spasticity is associated with side-effects and the development of tolerance. The aim of the present study was to assess if discontinued Baclofen treatment and its repeated application leads antispasticity effects, and whether such changes affect neuronal nitric oxide synthase (nNOS) in the brainstem, nNOS and parvalbumin (PV) in lumbar α-motoneurons and glial fibrillary acidic protein in the ventral horn of the spinal cord.

View Article and Find Full Text PDF

To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.

View Article and Find Full Text PDF

Spinal cord ischemia belongs to serious and relatively frequent diseases of CNS. The aim of the present study was to find out the vulnerability of nitrergic neurons to 15 min transient spinal cord ischemia followed by 1 and 2 weeks of reperfusion. We studied neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in structural elements of lumbosacral spinal cord along its rostrocaudal axis.

View Article and Find Full Text PDF

Using immunohistochemistry, we detected the expression of neuronal nitric oxide synthase (nNOS) in ventral medullary gigantocellular reticular nuclei and in the lumbosacral spinal cord 10 days after thoracic transection in experimental rabbits. We tried to determine whether neurons located below the site of injury are protected by the calcium binding protein parvalbumin (PV). Changes of nNOS immunoreactivity (IR) in spinal cord were correlated with the level of nNOS protein in dorsal and ventral horns.

View Article and Find Full Text PDF

A prolonged exposure to vibration stimuli triggers pathological changes with many later manifested symptoms. Early vibration-induced changes are still not very well explored. Therefore, short 30 min vibration period per day with frequency 60 Hz repeated for 10 days was used, and the retrograde axonal transport from the sciatic nerve, the expression of calcitonin gene-related peptide (CGRP) and parvalbumin (PV) were studied in the dorsal root ganglia (DRGs) corresponding to lower lumbar spinal levels.

View Article and Find Full Text PDF

Guanylyl cyclase (GC) as the effector molecule for nitric oxide (NO) plays a key role in the NO/cGMP signalling cascade. Based on these observations, our study focused on NO/sGC signalization in the bulbospinal respiratory pathway. The distribution of neuronal nitric oxide synthase (nNOS), β1 subunit of soluble guanylyl cyclase (β1sGC) and synaptophysin (SYN) was explored in the upper part of the respiratory pathway after C2-C3 hemisection of the spinal cord in male Wistar rats.

View Article and Find Full Text PDF

To clarify the relationship between Angiotensin II AT(1) and AT(2) receptors, we studied AT(1) receptor mRNA and binding expression in tissues from AT(2) receptor gene disrupted (AT(2)(-/-)) female mice, where AT(2) receptors are not expressed in vivo, using in situ hybridization and quantitative autoradiography. Wild type mice expressed AT(1A) receptor mRNA and AT(1) receptor binding in lung parenchyma, the spleen, predominantly in the red pulp, and in liver parenchyma. In wild type mice, lung AT(2) receptors were expressed in lung bronchial epithelium and smooth muscle, and were not present in the lung parenchyma, the spleen or the liver.

View Article and Find Full Text PDF

Objective: Inhibition of angiotensin II receptor type 1 (AT1) reduces chronic inflammation associated with hypertension. We asked whether AT1 receptor inhibition would reduce the innate inflammatory response induced by bacterial lipopolysaccharide (LPS).

Methods: We used unstimulated human circulating monocytes obtained from healthy donors by counterflow centrifugal elutriation.

View Article and Find Full Text PDF

Systemic lipopolysaccharide (LPS) administration induces an innate immune response and stimulates the hypothalamic-pituitary-adrenal axis. We studied Angiotensin II AT(1) receptor participation in the LPS effects with focus on the pituitary gland. LPS (50 microg/kg, i.

View Article and Find Full Text PDF

To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples.

View Article and Find Full Text PDF

In addition to regulating blood pressure, angiotensin II (Ang II) exerts powerful pro-inflammatory effects in hypertension through stimulation of its AT(1) receptors, most clearly demonstrated in peripheral arteries and in the cerebral vasculature. Administration of Ang II receptor blockers (ARBs) decreases hypertension-related vascular inflammation in peripheral organs. In rodent models of genetic hypertension, ARBs reverse the inflammation in the cerebral microcirculation.

View Article and Find Full Text PDF

Angiotensin II (Ang II) and its type-1 receptor (AT(1)) occur in neurons at multiple locations within the organism, but the basic biology of the receptor in the nervous system remains incompletely understood. We previously observed abundant AT(1)-like binding sites and intense expression of AT(1) immunoreactivity in perikarya of the dorsal root ganglion and ventral horn of the rat spinal cord. We have now examined the receptor in rat sciatic nerve, including the dynamics of its axonal transport.

View Article and Find Full Text PDF

ANG II AT(1) receptor blockade reduces inflammation in hypertension. To determine whether ANG II AT(1) receptor blockers (ARBs) influence the innate immune inflammatory response in normotensive rats, we studied rat plasma and spleen after a 3-day subcutaneous pretreatment with the ARB candesartan followed by a single dose of the bacterial endotoxin LPS (50 microg/kg ip). Peripheral administration of LPS to rodents produced a generalized inflammatory response with increased release of TNF-alpha, IL-1beta, and IL-6 into the circulation.

View Article and Find Full Text PDF

Angiotensin II AT(1) receptor blockers (ARBs) are commonly used in the clinical treatment of hypertension. Subcutaneous or oral administration of the ARB candesartan inhibits brain as well as peripheral AT(1) receptors, indicating transport across the blood-brain barrier. Pretreatment with candesartan profoundly modifies the response to stress.

View Article and Find Full Text PDF

The physiological actions of brain Angiotensin II AT(2) receptors and their relationship to Angiotensin II AT(1) receptors remain controversial. To further clarify their role, we determined to what extent systemic administration of an AT(2) receptor antagonist affected AT(2) receptor binding within the brain and the expression of AT(1) receptors. For this purpose, we subcutaneously administered the AT(2) receptor antagonist PD123319 (1 mg/kg/day) to adult male rats for two weeks via osmotic minipumps.

View Article and Find Full Text PDF

To clarify the role of Angiotensin II in the regulation of peripheral sensory and motor systems, we initiated a study of the expression, localization and transport of Angiotensin II receptor types in the rat sciatic nerve pathway, including L(4)-L(5) spinal cord segments, the corresponding dorsal root ganglia (DRGs) and the sciatic nerve. We used quantitative autoradiography for AT(1) and AT(2) receptors, and in situ hybridization to detect AT(1A), AT(1B) and AT(2) mRNAs. We found substantial expression and discrete localization of Angiotensin II AT(1) receptors, with much higher numbers in the grey than in the white matter.

View Article and Find Full Text PDF