Publications by authors named "Jaroslav Lang"

TiO2 as nanostructured powders were prepared by (1) sol-gel process and (2) hydrothermal method in combination with (A) the processing by pressurized hot water and methanol or (B) calcination. The subsequent synthesis step was the modification of prepared nanostructured TiO2 with nitrogen using commercial urea. Textural, structural, surface and optical properties of prepared TiO2 and N/TiO2 were characterized by nitrogen physisorption, powder X-ray diffraction, X-ray photoelectron spectroscopy and DR UV-vis spectroscopy.

View Article and Find Full Text PDF

Lanthanum-modified TiO photocatalysts (0.2-1.5 wt% La) were investigated in the methanol decomposition in an aqueous solution.

View Article and Find Full Text PDF

TiO/g-CN photocatalysts with the ratio of TiO to g-CN ranging from 0.3/1 to 2/1 were prepared by simple mechanical mixing of pure g-CN and commercial TiO Evonik P25. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements, and nitrogen physisorption.

View Article and Find Full Text PDF

Single and multilayer TiO₂ thin films coated on two types of soda-lime glass substrates (microscope slides and cylinders) were prepared by a chelating agent-assisted sol-gel method, using ethyl acetoacetate as a chelating agent, dip-coating and calcination at 500 °C for 2 h in air. Phase composition, microstructural, morphological and optical properties of thin films were comprehensively investigated by using XRF, advanced XRD analysis, Raman and UV-vis spectroscopy and AFM. It was found out that the thickness of thin films increases linearly with increasing number of deposited layers, indicating a good adhesion of the titania solution to a glass substrate as well as to a previously calcined layer.

View Article and Find Full Text PDF
Article Synopsis
  • The paper investigates the creation and properties of graphite/TiO2 nanocomposites aimed at fighting bacterial infections.
  • Multiple ratios of TiO2 nanoparticles were combined with graphite through thermal hydrolysis and characterized using advanced techniques like X-ray powder diffraction and microscopy.
  • The antibacterial effectiveness was tested against several bacterial strains, showing significant activity, especially against P. aeruginosa after exposure to light for 180 minutes.
View Article and Find Full Text PDF

The paper addresses laboratory preparation and antibacterial activity testing of kaolinite/nanoTiO2 composite in respect of the daylight irradiation time. Kaolinite/nanoTiO2 composites with 20 and 40 wt% of TiO2 were laboratory prepared, dried at 105 °C and calcined at 600 °C. The calcination caused transformation of kaolinite to metakaolinite and origination of the metakaolinite/nanoTiO2 composite.

View Article and Find Full Text PDF