Publications by authors named "Jaroslav Kocisek"

DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures.

View Article and Find Full Text PDF

2-Bromo-1-(3,3-dinitroazetidin-1-yl)ethan-1-one (RRx-001) is a hypoxic cell chemotherapeutics with already demonstrated synergism in combined chemo-radiation therapy. The interaction of the compound with secondary low-energy electrons formed in large amounts during the physico-chemical phase of the irradiation may lead to these synergistic effects. The present study focuses on the first step of RRx-001 interaction with low-energy electrons in which a transient anion is formed and fragmented.

View Article and Find Full Text PDF

We probe the separation of ligands from iron tetracarbonyl methyl acrylate (Fe(CO)(CHO) or Fe(CO)MA) induced by the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups and support the interpretation of data by quantum chemical calculations.

View Article and Find Full Text PDF

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions.

View Article and Find Full Text PDF

DNA origami nanostructures are emerging as a bottom-up nanopatterning approach. Direct combination of this approach with top-down nanotechnology, such as ion beams, has not been considered because of the soft nature of the DNA material. Here we demonstrate that the shape of 2D DNA origami nanostructures deposited on Si substrates is well preserved upon irradiation by ion beams, modeling ion implantation, lithography, and sputtering conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses recent experimental research on how low-energy electrons interact with radiosensitizers, which are compounds that enhance the effectiveness of radiation therapy in cancer treatment.
  • It emphasizes the importance of low-energy electrons formed during ionizing radiation exposure and their significant role in the radiation chemistry of living organisms over the past two decades.
  • The authors review specific compounds, including modified DNA components, nitroimidazoles, and organometallics, and suggest future directions for applying fundamental research to improve the design of agents used in combined chemo-radiation therapy.
View Article and Find Full Text PDF

Details of electron-induced chemistry of methyl methacrylate (MMA) upon complexation are revealed by combining gas-phase 2D electron energy loss spectroscopy with electron attachment spectroscopy of isolated MMA and its clusters. We show that even though isolated MMA does not form stable parent anions, it efficiently thermalizes the incident electrons via intramolecular vibrational redistribution, leading to autodetachment of slow electrons. This autodetachment channel is reduced in clusters due to intermolecular energy transfer and stabilization of parent molecular anions.

View Article and Find Full Text PDF

Cysteine-water cluster cations Cys(HO) and Cys(HO)H are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters.

View Article and Find Full Text PDF

Metronidazole belongs to the class of nitroimidazole molecules and has been considered as a potential radiosensitizer for radiation therapy. During the irradiation of biological tissue, secondary electrons are released that may interact with molecules of the surrounding environment. Here, we present a study of electron attachment to metronidazole that aims to investigate possible reactions in the molecule upon anion formation.

View Article and Find Full Text PDF

DNA origami nanoframes with two parallel DNA sequences are used to evaluate the effect of nucleoside substituents on radiation-induced DNA damage. Double strand breaks (DSB) of DNA are counted using atomic force microscopy (AFM), and total number of lesions is evaluated using real-time polymerase chain reaction (RT-PCR). Enhanced AT or GC content does not increase the number of DNA strand breaks.

View Article and Find Full Text PDF

We present a combined experimental and theoretical study of the fragmentation of singly and doubly -methylated glycine (sarcosine and ,-dimethyl glycine, respectively) induced by low-energy (keV) O ions. Multicoincidence mass spectrometry techniques and quantum chemistry simulations ( molecular dynamics and density functional theory) allow us to characterise different fragmentation pathways as well as the associated mechanisms. We focus on the fragmentation of doubly ionised species, for which coincidence measurements provide unambiguous information on the origin of the various charged fragments.

View Article and Find Full Text PDF

We investigate the effect of microhydration on electron attachment to thiophenols with halogen (Br) and nitro (NO) functional groups in the para position. We focus on the formation of anions upon the attachment of low-energy electrons with energies below 8 eV to heterogeneous clusters of the thiophenols with water. For nitro-thiophenol (NTP), the primary reaction channel observed is the associative electron attachment, irrespective of the microhydration.

View Article and Find Full Text PDF

Electron attachment and its equivalent in complex environments, single-electron reduction, are important in many biological processes. Here, we experimentally study the electron attachment to favipiravir, a well-known antiviral agent. Electron attachment spectroscopy is used to explore the energetics of associative (AEA) and dissociative (DEA) electron attachment to isolated favipiravir.

View Article and Find Full Text PDF

We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix.

View Article and Find Full Text PDF
Article Synopsis
  • Pyruvic acid is a significant molecule in prebiotic chemistry and may be formed on interstellar ices, prompting investigation into its stability against slow electron decomposition.
  • Researchers used mass spectrometry to analyze how pyruvic acid clusters, both pure and with water, change in fragmentation patterns when exposed to electron energy.
  • Findings show that clustering, particularly with water, greatly reduces fragmentation and reveals different decomposition pathways, supported by both experimental data and theoretical calculations.
View Article and Find Full Text PDF

In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere.

View Article and Find Full Text PDF

We report a dissociative electron attachment study to 2-furoic acid (CHO) isolated in a gas phase, which is a model molecule consisting of a carboxylic group and a furan ring. Dissociation of furan by low energy electrons is accessible only via electronic excited Feshbach resonances at energies of incident electrons above 5 eV. On the other hand, carboxylic acids are well-known to dissociate via attachment of electrons at subexcitation energies.

View Article and Find Full Text PDF

The reduction of 4-nitrothiophenol (NTP) to 4-4'-dimercaptoazobenzene (DMAB) on laser illuminated noble metal nanoparticles is one of the most widely studied plasmon mediated reactions. The reaction is most likely triggered by a transfer of low energy electrons from the nanoparticle to the adsorbed molecules. Besides the formation of DMAB, dissociative side reactions of NTP have also been observed.

View Article and Find Full Text PDF

Independently of the preparation method, for cluster cations of aliphatic amino acids, the protonated form MH is always the dominant species. This is a surprising fact considering that in the gas phase, they dissociate primarily by the loss of 45 Da, i.e.

View Article and Find Full Text PDF

We investigate the ionization induced chemistry of hydrogen peroxide in (HO) clusters generated after the pickup of individual HO molecules on large free Ar, M[combining macron]≈ 160, nanoparticles in molecular beams. Positive and negative ion mass spectra are recorded after an electron ionization of the clusters at energies 5-70 eV and after a slow electron attachment (below 4 eV), respectively. The spectra demonstrate that (HO) clusters with N≥ 20 are formed on argon nanoparticles.

View Article and Find Full Text PDF

We use a novel technique to solvate silver cations in small clusters of noble gases. The technique involves the formation of large, superfluid helium nanodroplets that are subsequently electron ionized, mass-selected by deflection in an electric field, and doped with silver atoms and noble gases (Ng) in pickup cells. Excess helium is then stripped from the doped nanodroplets by multiple collisions with helium gas at room temperature, producing cluster ions that contain no more than a few dozen noble gas atoms and just a few (or no) silver atoms.

View Article and Find Full Text PDF

We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions.

View Article and Find Full Text PDF

While matter is irradiated with highly-energetic particles, it may become chemically modified. Thereby, the reactions of free low-energy electrons (LEEs) formed as secondary particles play an important role. It is unknown to what degree and by which mechanism LEEs contribute to the action of electron-affinic radiosensitisers applied in radiotherapy of hypoxic tumours.

View Article and Find Full Text PDF