Fibroblast-like synoviocytes (FLSs) are among the main disease-driving players in most cases of monoarthritis (MonoA), oligoarthritis, and polyarthritis. In this review, we look at the characteristics and therapeutic challenges at the onset of arthritis and during follow-up management. In some cases, these forms of arthritis develop into autoimmune polyarthritis, such as rheumatoid arthritis (RA), whereas local eradication of the RA synovium could still be combined with systemic treatment using immunosuppressive agents.
View Article and Find Full Text PDFTraditionally, RNA integrity evaluation is based on ribosomal RNAs (rRNAs). Nevertheless, gene expression studies are usually focused on protein-coding messenger RNAs (mRNAs). Here, we present an RT-qPCR-based assay, which estimates mRNA integrity by comparing the abundance of 3' and 5' mRNA fragments.
View Article and Find Full Text PDFObjective: Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and reduced oxygen conditions.
Methods: hMDSCs were set for differentiation towards chondrogenic lineage using BMP-7 and TGF-β3. Cells were seeded onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days under normal (21%) and severe hypoxic (1%) conditions.
Osteoarthritis (OA) ranks as the prevailing type of arthritis on a global scale, for which no effective treatments are currently available. Arterial hypertension is a common comorbidity in OA patients, and antihypertensive drugs, such as nifedipine (NIF), may affect the course of OA progression. The aim of this preclinical study was to determine the effect of nifedipine on healthy and OA cartilage, depending on its route of administration.
View Article and Find Full Text PDFActivated rheumatoid arthritis (RA) synovial fibroblasts (SFs) are among the most important cells promoting RA pathogenesis. They are considered active contributors to the initiation, progression, and perpetuation of the disease; therefore, early detection of RASF activation could advance contemporary diagnosis and adequate treatment of undifferentiated early inflammatory arthritis (EA). In this study, we investigated the expression of nucleotide-binding, oligomerization domain (NOD)-like receptor family, pyrin domain containing (NLRP)1, NLRP3 inflammasomes, Toll-like receptor (TLR)1, TLR2, TLR4, vitamin D receptor (VDR), and secretion of matrix metalloproteinases (MMPs) in SFs isolated from patients with RA, osteoarthritis (OA), EA, and control individuals (CN) after knee surgical intervention.
View Article and Find Full Text PDFChondrons are the main functional microanatomical units in cartilage, consisting of chondrocytes and the directly surrounding pericellular matrix (PCM). They have attracted attention as a more physiological and biomimetic in vitro model for evaluating chondrocyte function and metabolism as compared to single chondrocytes. Chondrons may be more suitable for in vitro studies than primary chondrocytes that have been isolated without PCM since their in situ and in vivo states remain intact: chondrocytes within their PCM do not undergo the rapid dedifferentiation that proliferating single chondrocytes undergo in culture.
View Article and Find Full Text PDFPurpose Of Review: In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders.
Recent Findings: We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development.
Aging is associated with the development of various chronic diseases, in which both cardiovascular disorders and osteoarthritis are dominant. Currently, there is no effective treatment for osteoarthritis, whereas hypertension is often treated with L-type voltage-operated calcium channel blocking drugs, nifedipine being among the most classical ones. Although nifedipine together with other L-type voltage-operated calcium channel inhibitors plays an important role in controlling hypertension, there are unresolved questions concerning its possible effect on cartilage tissue homeostasis and the development of osteoarthritis.
View Article and Find Full Text PDFAdipose tissue represents an abundant source of stem cells. Along with anti-inflammatory effects, ASC secrete various factors that may modulate metabolism of extracellular matrix in osteoarthritic (OA) cartilage, suggesting that the presence of ASC could be advantageous for OA cartilage due to the recovery of homeostasis between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs). To evaluate these effects, cartilage explants (CE) were cocultured with ASC for 3 and 7 days under stimulation with or without IL-1 The pattern of gene expression in CE was modified by ASC, including the upregulation of and and the downregulation of and .
View Article and Find Full Text PDFStudies of lung diseases in vitro often rely on flat, plastic-based monocultures, due to short lifespan of primary cells, complicated anatomy, lack of explants, etc. We hereby present a native 3D model with cues for repopulating epithelial cells. Abilities of mesenchymal stem cells (MSC) to modulate bacterial lipopolysaccharide (LPS) and cigarette smoke-induced injury to pulmonary epithelium were tested in our model.
View Article and Find Full Text PDFBackground: The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs.
View Article and Find Full Text PDFThe aim of present study was to assess the expression of surface markers and the accumulation of protoporphyrin IX in synovial mesenchymal stem cells (SMSCs). SMSC from patients with rheumatoid arthritis (RA, n = 5) and osteoarthritis (OA, n = 5-6) were characterized and their PpIX accumulation rates were evaluated by flow cytometry. The expression of the 21 out of 24 tested surface markers, related to stem-like features and aggressiveness of cells showed no statistically significant differences between RA and OA groups.
View Article and Find Full Text PDFObjective: To compare the accumulation of protoporphyrin IX between synoviocytes of patients with rheumatoid arthritis (RA) or osteoarthritis (OA) and cartilage explants (CE) as well as chondrons of patients with OA after the application of 5-aminolevulinic acid (ALA) or its methyl ester (ALA-Me).
Materials And Methods: Samples of synovial and cartilage tissues were obtained from joint replacement surgeries. The accumulation of PpIX was determined by measuring fluorescence spectra from 2 × 10(5) synoviocytes or chondrons suspended in a glass tube or directly from CE surface after 2, 4, 8 and 24h of incubation with ALA or ALA-Me.