Objective: To investigate whether an increasing load of β-amyloid and/or neuritic plaques influences the phenotype, and thus the clinical diagnostic accuracy, of dementia with Lewy bodies (DLB).
Methods: A series of 64 subjects with autopsy-proven DLB was studied. Last diagnosis before death was used to determine the clinical diagnostic accuracy of DLB in relation to Lewy body distribution and extent of Alzheimer β-amyloid and/or neuritic pathology.
Aims: Frontotemporal lobar degeneration (FTLD) and motor neurone disease are linked by the possession of a hexanucleotide repeat expansion in C9ORF72, and both show neuronal cytoplasmic inclusions within cerebellar and hippocampal neurones which are TDP-43 negative but immunoreactive for p62 and dipeptide repeat proteins (DPR), these being generated by a non-ATG RAN translation of the expanded region of the gene.
Methods: Twenty-two cases of FTLD from Newcastle were analysed for an expansion in C9ORF72 by repeat primed PCR and Southern blot. Detailed case note analysis was performed, and blinded retrospective clinical impressions were achieved by review of clinical histories.
Background: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72--have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
View Article and Find Full Text PDFBackground: Miller Fisher syndrome is a regional variant of Guillain-Barre syndrome with a characteristic clinical triad of ophthalmoplegia, areflexia and ataxia and occasionally distal limb sensory loss. 90% of patients have associated antibodies to the GQ1b ganglioside. The pathophysiology of antibody-mediated peripheral nerve impairment remains uncertain.
View Article and Find Full Text PDFMitochondrial defects within substantia nigra (SN) neurons are implicated in the pathogenesis of Parkinson's disease. SN neurons show increased mitochondrial defects, mitochondrial DNA deletion levels, and susceptibility to such dysfunction, although the role of mitochondria in neuronal degeneration remains uncertain. In this study, we addressed this important question by exploring changes within the mitochondria of SN neurons from patients with primary mitochondrial diseases to determine whether mitochondrial dysfunction leads directly to neuronal cell loss.
View Article and Find Full Text PDFMitochondrial respiratory chain disease is associated with a spectrum of clinical presentations and considerable genetic heterogeneity. Here we report molecular genetic and neuropathologic findings from an adult with an unusual manifestation of mitochondrial DNA disease. Clinical features included early-onset cataracts, ataxia, and progressive paraparesis, with sequencing revealing the presence of a novel de novo m.
View Article and Find Full Text PDFFunctional neuroimaging studies have consistently reported abnormalities in the visual cortex in patients with dementia with Lewy bodies (DLB), but their neuropathologic substrates are poorly understood. We analyzed synaptic proteins and choline acetyltransferase (ChAT) in the primary (BA17) and association (BAs18/19) visual cortex in DLB and similar aged control and Alzheimer disease (AD) subjects. We found lower levels of synaptophysin, syntaxin, SNAP-25, and γ-synuclein in DLB subjects versus both aged control (68%-78% and 27%-72% for BA17 and BAs18/19, respectively) and AD cases (54%-67% and 10%-56% for BA17 and BAs18/19, respectively).
View Article and Find Full Text PDFNeuropathological findings in mitochondrial DNA disease vary and are often dependent on the type of mitochondrial DNA defect. Many reports document neuronal cell loss, demyelination, gliosis and necrotic lesions in post-mortem material. However, previous studies highlight vascular abnormalities in patients harbouring mitochondrial DNA defects, particularly in those with the m.
View Article and Find Full Text PDFObjective: To determine whether cases of frontotemporal lobar degeneration (FTLD) do exist in elderly individuals and have clinical and neuropathological features distinct from those with presenile onset.
Design: Retrospective matched cohort study.
Setting: Regional Neuroscience Centre, North East England.
Aims: We aimed to investigate the role of the nuclear carrier and binding proteins, transportin 1 (TRN1) and transportin 2 (TRN2), TATA-binding protein-associated factor 15 (TAF15) and Ewing's sarcoma protein (EWS) in inclusion body formation in cases of frontotemporal lobar degeneration (FTLD) associated with fused in sarcoma protein (FTLD-FUS).
Methods: Eight cases of FTLD-FUS (five cases of atypical FTLD-U, two of neuronal intermediate filament inclusion body disease and one of basophilic inclusion body disease) were immunostained for FUS, TRN1, TRN2, TAF15 and EWS. Ten cases of FTLD associated with TDP-43 inclusions served as reference cases.
Objective: To explore myelin components and mitochondrial changes within the central nervous system in patients with well-characterized mitochondrial disorders due to nuclear DNA or mitochondrial DNA (mtDNA) mutations.
Design: Immunohistochemical analysis, histochemical analysis, mtDNA sequencing, and real-time and long-range polymerase chain reaction were used to determine the pathogenicity of mtDNA deletions.
Setting: Department of Clinical Pathology, Columbia University Medical Center, and Newcastle Brain Tissue Resource.
Objective: To explore the relationship between α-synuclein pathology and mitochondrial respiratory chain protein levels within single substantia nigra neurons.
Design: We examined α-synuclein and mitochondrial protein expression in substantia nigra neurons of 8 patients with dementia with Lewy bodies, 5 patients with Parkinson disease, and 8 control subjects. Protein expression was determined using immunocytochemistry followed by densometric analysis.
Objective: The purpose of this study was to investigate the neuropathological substrates underlying in vivo hippocampal atrophy on magnetic resonance imaging (MRI) in autopsy confirmed neurodegenerative dementia cases.
Methods: Thirty-one neuropathologically verified cases (23 with Lewy body dementia (LBD) and eight with Alzheimer's disease (AD)) were included who had undergone an MRI scan close to death (mean 1.5 years).
Neuropathol Appl Neurobiol
August 2012
Cerebellar ataxia is a prominent clinical symptom in patients with mitochondrial DNA (mtDNA) disease. This is often progressive with onset in young adulthood. We performed a detailed neuropathologic investigation of the olivary-cerebellum in 14 genetically and clinically well-defined patients with mtDNA disease.
View Article and Find Full Text PDFDefects in the mitochondrial DNA replication enzyme, polymerase γ, are an important cause of mitochondrial disease with ∼25% of all adult diagnoses attributed to mutations in the POLG gene. Peripheral neuronopathy is often part of the clinical syndrome and can represent the most disabling feature. In spite of this, the molecular mechanisms underlying the neuronopathy remain to be elucidated and treatment strategies are limited.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia, increasing in prevalence with age. Most patients who develop AD have an unknown cause, but characteristic neuropathological features include the deposition of extracellular amyloid beta and of intraneuronal hyperphosphorylated tau protein. Researchers have previously implicated mitochondrial dysfunction in AD.
View Article and Find Full Text PDFDopaminergic (DA) neuron degeneration is a feature of brain aging but is markedly increased in patients with Parkinson's disease (PD). Recent data indicate elevated metabolic stress as a possible explanation for DA neuron vulnerability. Using laser capture microdissection, we isolated DA neurons from the substantia nigra pars compacta of PD patients, age-matched and young controls to determine transcriptional changes by expression profiling and pathway analysis.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) is clinically, pathologically and genetically heterogeneous. Recent descriptions of a pathological sub-type that is ubiquitin positive, TDP-43 negative and immunostains positive for the Fused in Sarcoma protein (FUS) raises the question whether it is associated with a distinct clinical phenotype identifiable on clinical grounds, and whether mutations in the Fused in Sarcoma gene (FUS) might also be associated with FTLD. Examination of a pathological series of 118 cases of FTLD from two centres, showing tau-negative, ubiquitin-positive pathology, revealed FUS pathology in five patients, four classified as atypical FTLD with ubiquitin inclusions (aFTLD-U), and one as neuronal intermediate filament inclusion disease (NIFID).
View Article and Find Full Text PDFThe objective of this study was to determine the neuropathological correlates of regional medial temporal lobe volume measures on magnetic resonance imaging (MRI) in subjects with Lewy body dementia (LBD). Twenty-three autopsy-confirmed LBD cases with an MRI scan close to death (mean 1.5 years) were studied.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) is generally recognised as a disorder with presenile onset (that is before 65 years of age) with only occasional cases presenting later than this. We set out to determine what proportion of cases of FTLD had late onset of disease and whether such cases of FTLD had distinctive clinical and neuropathological features as compared to cases with presenile onset. Within a combined Manchester and Newcastle autopsy series of 117 cases with pathologically confirmed FTLD (109/117 cases also met Lund Manchester clinical criteria for FTLD), we identified 30 cases (onset age range 65-86 years), comprising 25% of all FTLD cases ascertained in these two centres over a 25-year period.
View Article and Find Full Text PDF