Mueller matrix ellipsometry has been used to precisely characterize quartz waveplates for demanding applications in the semiconductor industry and high precision polarimetry. We have found this experimental technique to be beneficial to use because it enables us to obtain absolute and precise measurement of retardation in a wide spectral range, waveplate orientation, and compound waveplate adjustment. In this paper, the necessity of including the optical activity in the Mueller matrix model and data treatment is demonstrated.
View Article and Find Full Text PDFA dual broadband perfect absorber based on a graphene-covered compound silver (Ag) grating structure working in the infrared (0.8-2.1 µm) regime is proposed and investigated numerically.
View Article and Find Full Text PDFA self-contained formulation for analyzing electromagnetic scattering by a significant class of planar gratings composed of plasmonic nanorods, which were infinite length along their axes, is presented. The procedure for the lattice sums technique was implemented in a cylindrical harmonic expansion method based on the generalized reflection matrix approach for full-wave scattering analysis of plasmonic gratings. The method provided a high computational efficiency and can be considered as one of the best-suited numerical tools for the optimization of plasmonic sensors and plasmonic guiding devices both having a planar geometry.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2019
Surface plasmon resonance has become a widely accepted optical technique for studying biological and chemical interactions. Among others, detecting small changes in analyte concentration in complex solutions remains challenging, e.g.
View Article and Find Full Text PDFWe experimentally demonstrate surface plasmon resonance (SPR) in the terahertz range in InSb and InAs. The surface plasmon is excited on the interface between a thin polymer film and the semiconductor using a silicon prism in Otto configuration. The low effective mass of InSb and InAs permits tuning of the SPR by an external magnetic field in the transversal configuration.
View Article and Find Full Text PDFA robust plasmonic semiconductor-based Mach-Zehnder interferometer (MZI), which consists of a semiconductor layer with a microslit flanked by two identical microgrooves, is proposed and investigated for the terahertz sensing. The microgrooves reflect the surface plasmon polariton waves toward the microslit, where they interfere with the transmitted terahertz wave. The interference pattern is determined by the permittivities of the sensing material and semiconductor (i.
View Article and Find Full Text PDFSeeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ/530) in the THz spectral range.
View Article and Find Full Text PDFBinary gratings with high or low metal filling ratios in a grating region have been demonstrated as successful candidates in enhancing the emittance of emitters for thermophotovoltaics since they could support surface plasmons (SPs), the Rayleigh-Wood anomaly (RWA), or cavity resonance (CR) within their geometries. This work shows that combining a tungsten binary grating with a low and high filling ratio to form a pyramid grating can significantly increase the emittance, which is nearly perfect in the wavelength region from 0.6 to 1.
View Article and Find Full Text PDFMagnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors.
View Article and Find Full Text PDFThe expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively.
View Article and Find Full Text PDFA rigorous design using periodic silicon (Si) gratings as absorbers for solar cells in visible and near-infrared regions is numerically presented. The structure consists of a subwavelength Si grating layer on top of an Si substrate. Ranges of grating dimensions are preliminary considered satisfying simple and feasible fabrication techniques with an aspect ratio defined as the ratio of the grating thickness (d) and the grating lamella width (w), with 0 < d/w < 1.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
March 2014
A self-contained coupled-mode theory for the coupled two asymmetric photonic crystal waveguides (PCWs) is presented. The first-order coupled-mode equations are derived under a weak coupling assumption. The coupling coefficients are obtained systematically by a matrix calculus using the modal solutions of each PCW in isolation.
View Article and Find Full Text PDFThe expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively.
View Article and Find Full Text PDFEur Phys J E Soft Matter
April 2013
We reanalysed the role of superparamagnetic magnetite clusters observed in a pigeon's upper beak to decide if this matter can be a component of some sort of pigeon magnetometer for Earth orientation. We investigated the mutual interaction of the magnetite clusters induced by the geomagnetic field. The force sensitivity of the hypothetical magnetometer in a pigeon's upper beak was estimated considering the previously presented threshold magnetic sensitivity of pigeons, measured in electrophysiological and behavioural investigations.
View Article and Find Full Text PDFThis paper considers the electromagnetic scattering problem of periodically corrugated surface with local imperfection of structural periodicity, and presents a formulation based on the coordinate transformation method (C-method). The C-method is originally developed to analyze the plane-wave scattering from perfectly periodic structures, and uses the pseudo-periodic property of the fields. The fields in imperfectly periodic structures are not pseudo-periodic and the C-method cannot be directly applied.
View Article and Find Full Text PDFThis paper proposes a spectral-domain approach to the electromagnetic scattering problem of lamellar grating with defects. The fields in imperfectly periodic structures have continuous spectra in the wavenumber space, and the main problem of the spectral-domain approach is connected to the discretization scheme on the wavenumber. The present approach introduces the pseudo-periodic Fourier transform to consider the discretization scheme in the Brillouin zone.
View Article and Find Full Text PDFLight wave propagation in third-order nonlinear media with applied external electric field is investigated. Interplay between the nonlinear electro-optic and all-optical effects is examined theoretically. Energy exchange between the orthogonal light polarizations, the cross polarization conversion, results.
View Article and Find Full Text PDFAnisotropic lamellar sub-wavelength gratings (nanogratings) are described by Effective Medium Approximation (EMA). Analytical formulas for effective medium optical parameters of nanogratings from arbitrary anisotropic materials are derived using approximation of zero-order diffraction mode. The method is based on Rigorous Coupled Wave Analysis (RCWA) combined with proper Fourier factorization method.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2005
The spectroscopic ellipsometry of lamellar gratings made of lossless dielectric materials is studied numerically by using the rigorous coupled-wave method with the use of Li's Fourier factorization rules [J. Opt. Soc.
View Article and Find Full Text PDFA method for thickness monitoring and turning-point prediction during deposition of narrow band pass optical filters (NBPF) for dense-wavelength-division-multiplexing (DWDM) applications is proposed. The method is based on a recurrent approach, with relative transmittance .tting, and includes partial coherence and monochromator bandpass e.
View Article and Find Full Text PDF