Industrial processes, coal combustion, biomass burning (BB), and vehicular transport are important sources of atmospheric fine particles (PM) and contribute to ambient air concentrations of health-hazardous species, such as heavy metals, polycyclic aromatic hydrocarbons (PAH), and oxygenated-PAHs (OPAH). In China, emission controls have been implemented to improve air quality during large events, like the Youth Olympic Games (YOG) in August 2014 in Nanjing. In this work, six measurement campaigns between January 2014 and August 2015 were undertaken in Nanjing to determine the effects of emission controls and meteorological factors on PM concentration and composition.
View Article and Find Full Text PDFAmbient inhalable particulate matter (PM) is a serious health concern worldwide, but especially so in China where high PM concentrations affect huge populations. Atmospheric processes and emission sources cause spatial and temporal variations in PM concentration and chemical composition, but their influence on the toxicological characteristics of PM are still inadequately understood. In this study, we report an extensive chemical and toxicological characterization of size-segregated urban air inhalable PM collected in August and October 2013 from Nanjing, and assess the effects of atmospheric processes and likely emission sources.
View Article and Find Full Text PDFContext: Particulate matter (PM) has been identified as a major environmental pollutant causing severe health problems. Large amounts of the harmful particulate matter (PM) are emitted from residential wood combustion, but the toxicological properties of wood combustion particles are poorly known.
Objective: To investigate chemical and consequent toxicological characteristics of PM(1) emitted from different phases of batch combustion in four heating appliances.
Several studies have shown that combustion-derived fine particles cause adverse health effects. Previous toxicological studies on combustion-derived fine particles have rarely involved multiple endpoints and a detailed characterization of chemical composition. In this study, we developed a novel particle sampling system for toxicological and chemical characterization (PSTC), consisting of the Dekati Gravimetric Impactor (DGI) and a porous tube diluter.
View Article and Find Full Text PDF