Background: Beta-cell monogenic forms of diabetes have strong support for precision medicine. We systematically analyzed evidence for precision treatments for GCK-related hyperglycemia, HNF1A-, HNF4A- and HNF1B-diabetes, and mitochondrial diabetes (MD) due to m.3243 A > G variant, 6q24-transient neonatal diabetes mellitus (TND) and SLC19A2-diabetes.
View Article and Find Full Text PDFBackground: Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for precision medicine. We reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-HNF4A- and HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes.
View Article and Find Full Text PDFMODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients.
View Article and Find Full Text PDFAims/hypothesis: Monogenic forms of diabetes (MODY, neonatal diabetes mellitus and syndromic forms) are rare, and affected individuals may be misclassified and treated suboptimally. The prevalence of type 1 diabetes is high in Finnish children but systematic screening for monogenic diabetes has not been conducted. We assessed the prevalence and clinical manifestations of monogenic diabetes in children initially registered with type 1 diabetes in the Finnish Pediatric Diabetes Register (FPDR) but who had no type 1 diabetes-related autoantibodies (AABs) or had only low-titre islet cell autoantibodies (ICAs) at diagnosis.
View Article and Find Full Text PDFAims/hypothesis: Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum.
Methods: We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.
The last decade has revealed hundreds of genetic variants associated with type 2 diabetes, many especially with insulin secretion. However, the evidence for their single or combined effect on beta-cell function relies mostly on genetic association of the variants or genetic risk scores with simple traits, and few have been functionally fully characterized even in cell or animal models. Translating the measured traits into human physiology is not straightforward: none of the various indices for beta-cell function or insulin sensitivity recapitulates the dynamic interplay between glucose sensing, endogenous glucose production, insulin production and secretion, insulin clearance, insulin resistance-to name just a few factors.
View Article and Find Full Text PDFContext: The clinical spectrum of organogenetic anomalies associated with HNF1B mutations is heterogeneous. Besides cystic kidney disease, diabetes, and various other manifestations, odd cases of mainly neonatal and posttransplantation cholestasis have been described. The biliary phenotype is incompletely defined.
View Article and Find Full Text PDF