In the production of voiced speech, glottal flow skewing refers to the tilting of the glottal flow pulses to the right, often characterized as a delay of the peak, compared to the glottal area. In the past four decades, several studies have addressed this phenomenon using modeling of voice production with analog circuits and computer simulations. However, previous studies measuring flow skewing in natural production of speech are sparse and they contain little quantitative data about the degree of skewing between flow and area.
View Article and Find Full Text PDFVoiced speech consists mainly of the source signal that is frequency weighted by the acoustic filtering of the upper airways and vortex-induced sound through perturbation in the flow field. This study investigates the flow instabilities leading to vortex shedding and the importance of coherent structures in the supraglottal region downstream of the vocal folds for the far-field sound signal. Large eddy simulations of the compressible airflow through the glottal constriction are performed in realistic geometries obtained from three-dimensional magnetic resonance imaging data.
View Article and Find Full Text PDFThis article describes modal analysis of acoustic waves in the human vocal tract while the subject is pronouncing [o]. The model used is the wave equation in three dimensions, together with physically relevant boundary conditions. The geometry is reconstructed from anatomical MRI data obtained by other researchers.
View Article and Find Full Text PDF