During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2022
Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale ; electron-beam lithography (EBL) is currently the most promising technique.
View Article and Find Full Text PDFDNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR.
View Article and Find Full Text PDFThe proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination.
View Article and Find Full Text PDFFormation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy.
View Article and Find Full Text PDFFanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions.
View Article and Find Full Text PDFThe RECQ4 protein belongs to the RecQ helicase family, which plays crucial roles in genome maintenance. Mutations in the RECQ4 gene are associated with three insidious hereditary disorders: Rothmund-Thomson, Baller-Gerold, and RAPADILINO syndromes. These syndromes are characterized by growth deficiency, radial ray defects, red rashes, and higher predisposition to malignancy, especially osteosarcomas.
View Article and Find Full Text PDFDesign of new antitumor Pt drugs is currently also focused on those new Pt complexes which form on DNA major adducts that can hardly be removed by DNA repair systems. An attempt of this kind has already been done by designing and synthesizing new antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-pyrazolate)](2+) (AMPZ). This new Pt(II) complex exhibits markedly higher toxic effects in some tumor cell lines than conventional mononuclear cisplatin.
View Article and Find Full Text PDFBackground: The design of anticancer metallodrugs is currently focused on platinum complexes which form on DNA major adducts that cannot readily be removed by DNA repair systems. Hence, antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-pyrazolate)](2+) (AMPZ), have been designed and synthesized. These complexes exhibit markedly higher toxic effects in tumor cell lines than mononuclear conventional cisplatin.
View Article and Find Full Text PDFCarboplatin, an analogue of "classical" cis-diamminedichloridoplatinum(II) (cisplatin), is a widely used second-generation platinum anticancer drug. Cytotoxicity of cisplatin and carboplatin is mediated by platinum-DNA adducts. Markedly higher concentrations of carboplatin are required, and the rate of adduct formation is considerably slower.
View Article and Find Full Text PDFAerobic anoxygenic phototrophs (AAPs) are prokaryotic microorganisms capable of harvesting light using bacteriochlorophyll-based reaction centres. Marine AAP communities are generally dominated by species belonging to the Roseobacter clade. For this reason, we used marine Roseobacter-related strain COL2P as a model organism to characterize its photosynthetic apparatus, level of pigmentation and expression of photosynthetic complexes.
View Article and Find Full Text PDF