The influence of oxygen (0-50 bar) on the molar mass and composition of hemicelluloses after hydrothermal treatment of spruce chips was studied in a batch reactor setup at 130 °C-160 °C. Purified galactoglucomannan was studied as a reference. The dissolved oxygen enhanced significantly the depolymerization of hemicelluloses from over 15,000 g/mol to 180 g/mol (monomers) as well as promoted acids formation from the monosaccharides.
View Article and Find Full Text PDFHundreds of different fast-growing hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material.
View Article and Find Full Text PDFInd Eng Chem Res
December 2021
The current work studies the reductive catalytic depolymerization (RCD) of lignin from a novel semi-industrial process. The aim was to obtain aromatic mono-, di-, tri-, and tetramers for further valorization. The substrate and products were characterized by multiple analytical methods, including high pressure size-exclusion chromatography (HPSEC), gas chromatography-mass spectrometry, GC-flame ionization detector (FID), GC-FID/thermal conductivity detector (TCD), and NMR.
View Article and Find Full Text PDFThe polysaccharides of the sterile conk of (Chaga) have demonstrated multiple bioactivities. The mycelium of this basidiomycete, obtained after submerged cultivation, has been considered a feasible alternative to the sterile conk for the production of polysaccharides. However, previous research has paid little attention to the differences in the structures of polymers obtained from the different resources.
View Article and Find Full Text PDFHazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2018
Hydrodeoxygenation (HDO) of isoeugenol (IE) was investigated using bimetallic iridium-rhenium and platinum-rhenium catalysts supported on alumina in the temperature and pressure ranges of 200-250 °C and 17-40 bar in nonpolar dodecane as a solvent. The main parameters were catalyst type, hydrogen pressure, and initial concentration. Nearly quantitative yield of the desired product, propylcyclohexane (PCH), at complete conversion in 240 min was obtained with Ir-Re/AlO prepared by the deposition-precipitation method using 0.
View Article and Find Full Text PDFThe production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose.
View Article and Find Full Text PDFHemicelluloses, the second most abundant polysaccharide right after cellulose, are in practice still treated as a side-stream in biomass processing industries. In the present study, we report an approach to use a wood-derived and side-stream biopolymer, spruce wood hemicellulose (galactoglucomannan, GGM) to partially replace the synthetic PLA as feedstock material in 3D printing. A solvent blending approach was developed to ensure the even distribution of the formed binary biocomposites.
View Article and Find Full Text PDFAmidation of renewable feedstocks, such as fatty acids, esters, and Chlorella alga based biodiesel, was demonstrated with zeolites and mesoporous materials as catalysts and ethanolamine, alaninol, and leucinol. The last two can be derived from amino acids present in alga. The main products were fatty alkanol amides and the corresponding ester amines, as confirmed by NMR and IR spectroscopy.
View Article and Find Full Text PDFAim: In this article, we use an alternative cancer model for the evaluation of nanotherapy, and assess the impact of surface functionalization and active targeting of mesoporous silica nanoparticles (MSNPs) on therapeutic efficacy in vivo.
Materials & Methods: We used the chorioallantoic membrane xenograft assay to investigate the biodistribution and therapeutic efficacy of folate versus polyethyleneimine-functionalized γ-secretase inhibitor-loaded MSNPs in breast and prostate tumor models.
Results: γ-secretase inhibitor-loaded MSNPs inhibited tumor growth in breast and prostate cancer xenografts.
Norway spruce O-acetyl-galactoglucomannans (GGM) are water-soluble hemicelluloses that have potential to be produced in large scale as a side product of the mechanical pulping industry or by hot-water extraction of wood. Chemical modification is often needed to tailor such water-soluble polysaccharides into industrially valuable compounds. In this work, treatment of GGM with butyric and benzoic anhydride in pyridine/dimethylformamide rendered GGM derivatives, which were hydrophobic and partially soluble in organic solvents.
View Article and Find Full Text PDFThe composition of Scots pine bark, its degradation, and the production of hydrolytic and ligninolytic enzymes were evaluated during 90 days of incubation with Phanerochaete velutina and Stropharia rugosoannulata. The aim was to evaluate if pine bark can be a suitable fungal substrate for bioremediation applications. The original pine bark contained 45% lignin, 25% cellulose, and 15% hemicellulose.
View Article and Find Full Text PDFWater-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, information is needed on its stability in acidic conditions. The kinetics of acid hydrolysis of GGM was studied at temperatures up to 90 degrees C in the pH range of 1-3.
View Article and Find Full Text PDFThe antioxidant potency and the radical scavenging capacity of superoxide and peroxyl radicals were assessed for 13 hydrophilic knotwood extracts of commercially important wood species, or fractions thereof, as well as for five pure wood-derived lignans and the flavonoid taxifolin. The chemical composition of the knotwood extracts was determined by gas chromatography combined with mass spectrometry. Most of the investigated wood species were rich in hydrophilic extractives (10-20% of the dry wood) with one or a few compounds dominating in each extract.
View Article and Find Full Text PDFSalix caprea stemwood and knots were found to contain the phenolic extractives vanillic acid, 3-p-coumaryl alcohol, coniferyl alcohol, sinapylaldehyde, dihydrokaempferol, catechin, naringenin, gallocatechin, dihydromyrcetin and taxifolin. The knots contained larger quantities of flavonoids than did stemwood of the same tree.
View Article and Find Full Text PDF