Publications by authors named "Jarkko Ustinov"

Aims/hypothesis: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier.

View Article and Find Full Text PDF

Pancreatic islets regulate blood glucose homeostasis through the controlled release of insulin; however, current metabolic models of glucose-sensitive insulin secretion are incomplete. A comprehensive understanding of islet metabolism is integral to studies of endocrine cell development as well as diabetic islet dysfunction. Human pluripotent stem cell-derived islets (SC-islets) are a developmentally relevant model of human islet function that have great potential in providing a cure for type 1 diabetes.

View Article and Find Full Text PDF

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets.

View Article and Find Full Text PDF

Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis.

View Article and Find Full Text PDF

Aims/hypothesis: There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress.

View Article and Find Full Text PDF

Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3, on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3 and healthy-control cells, but in later stages, NEUROG3 expression was upregulated prematurely in STAT3 cells together with insulin (INS) and glucagon (GCG).

View Article and Find Full Text PDF

Protection or restoration of pancreatic β-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specific developmental processes. However, their role in pancreatic endocrine cell differentiation remains unknown.

View Article and Find Full Text PDF

The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER) at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose.

View Article and Find Full Text PDF

All forms of diabetes mellitus (DM) are characterized by the loss of functional pancreatic β cell mass, leading to insufficient insulin secretion. Thus, identification of novel approaches to protect and restore β cells is essential for the development of DM therapies. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-inducible protein, but its physiological role in mammals has remained obscure.

View Article and Find Full Text PDF

Placental lactogen (PL) induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR) function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation.

View Article and Find Full Text PDF

Aims/hypothesis: EGF receptor (EGFR) signalling is required for normal beta cell development and postnatal beta cell proliferation. We tested whether beta cell proliferation can be triggered by EGFR activation at any age and whether this can protect beta cells against apoptosis induced by diabetogenic insults in a mouse model.

Methods: We generated transgenic mice with doxycycline-inducible expression of constitutively active EGFR (L858R) (CA-EGFR) under the insulin promoter.

View Article and Find Full Text PDF

Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive.

View Article and Find Full Text PDF

Activin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages.

View Article and Find Full Text PDF

Loss-of-function mutations in the KATP channel genes KCNJ11 and ABCC8 cause neonatal hyperinsulinism in humans. Dominantly inherited mutations cause less severe disease, which may progress to glucose intolerance and diabetes in later life (e.g.

View Article and Find Full Text PDF

Concomitant use of hydrocortisone and the nonspecific cyclo-oxygenase (COX)-inhibitor indomethacin increases the risk for intestinal perforations in preterm infants. We determined whether this was associated with insufficient epidermal growth factor receptor (EGF-R) signaling. We tested the effect of EGF, hydrocortisone, and indomethacin on its activation, cell proliferation and migration, COX-2 expression, and prostaglandin E2 (PGE2) production.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGF-R) signaling is essential for proper fetal development and growth of pancreatic islets, and there is also evidence for its involvement in beta-cell signal transduction in the adult. To study the functional roles of EGF-R in beta-cell physiology in postnatal life, we have generated transgenic mice that carry a mutated EGF-R under the pancreatic duodenal homeobox-1 promoter (E1-DN mice). The transgene was expressed in islet beta- and delta-cells but not in alpha-cells, as expected, and it resulted in an approximately 40% reduction in pancreatic EGF-R, extracellular signal-related kinase, and Akt phosphorylation.

View Article and Find Full Text PDF

The long-term function of human pancreatic islet grafts may depend on the neogenesis of beta cells from epithelial precursors within the grafted tissue. We have developed an in vitro model for human islet neogenesis. In this study, we have investigated the morphological signs of maturation in cultivated human islet buds (CHIBs) before and after transplantation.

View Article and Find Full Text PDF

Background: Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic.

Results: The cell lines were cultured either on human or mouse feeder cells.

View Article and Find Full Text PDF

We have reproduced a previously described method for the in vitro generation of endocrine cells in adult human pancreatic tissue culture. The aim of this study was to characterize the nature of pancreatic progenitor cells and to identify the factors necessary for their differentiation in this model. During monolayer expansion, two types of cells proliferated sequentially; first cytokeratin 19 (CK19)-positive ductal epithelial cells and then nestin-positive fibroblastoid cells.

View Article and Find Full Text PDF

We have identified patients in whom strenuous physical exercise leads to hypoglycemia caused by inappropriate insulin release (exercise-induced hyperinsulinism [EIHI]). The aim of the present study was to test the hypothesis that the increased levels of lactate and/or pyruvate during anaerobic exercise would trigger the aberrant insulin secretion in these patients. A total of 12 patients (8 women and 4 men from two families) were diagnosed with EIHI, based on hypoglycemia and a more than threefold increase in plasma insulin induced by a 10-min bicycle exercise test.

View Article and Find Full Text PDF

The neuregulin (NRG)/epidermal growth factor (EGF) family of growth factors consists of several ligands that specifically activate four erbB receptor-tyrosine kinases, namely erbB-1 (EGF-R), erbB-2 (neu), erbB-3, and erbB-4. We have previously shown that islet morphogenesis is impaired and beta-cell differentiation delayed in mice lacking functional EGF-R [EGF-R (-/-)]. The present study aims to clarify which erbB ligands are important for islet development.

View Article and Find Full Text PDF

Primary adult human insulin-producing beta-cells are susceptible to infection by prototype strains of coxsackieviruses (CV) and infection may result in impaired beta-cell function and/or cell death, as shown for coxsackie B virus (CVB) types 4 and 5, or have no apparent immediate adverse effects, as shown for CVA-9. Because of the limited availability of human pancreatic beta-cells, the aim of this study was to find out if foetal porcine pancreatic islets could be used as a substitute in enterovirus (EV) screening. These cells resemble human beta-cells in several biological properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0jbvqiiejajqsgv49ph9t9ek28asn584): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once