Phys Chem Chem Phys
February 2024
"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase -butyltin-oxo cage dications [(BuSn)O(OH)] in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2023
Correction for 'UV and VUV-induced fragmentation of tin-oxo cage ions' by Jarich Haitjema , , 2021, , 20909-20918, https://doi.org/10.1039/D1CP03148A.
View Article and Find Full Text PDFPhotoresist materials are being optimized for the recently introduced Extreme Ultraviolet (EUV) photolithographic technology. Organometallic compounds are potential candidates for replacing the ubiquitous polymer-based chemically amplified resists. Tin (Sn) has a particularly large absorption cross section for EUV light (13.
View Article and Find Full Text PDFExtreme ultraviolet (EUV) lithography (13.5 nm) is the newest technology that allows high-throughput fabrication of electronic circuitry in the sub-20 nm scale. It is commonly assumed that low-energy electrons (LEEs) generated in the resist materials by EUV photons are mostly responsible for the solubility switch that leads to nanopattern formation.
View Article and Find Full Text PDF