Publications by authors named "Jari Vartiainen"

In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO using AP-LTO® 330 and ozone (O) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO film deposition rate was dependent on the temperature varying within 1.

View Article and Find Full Text PDF

A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmmdayatm were achieved at extremely high levels of relative humidity (RH95%).

View Article and Find Full Text PDF

Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers.

View Article and Find Full Text PDF

The Cellulose nanofibrils (CNF), also referred to as nanocellulose, is one of the most studied bio-based material in recent year, which has good potential in the future for packaging applications due to its excellent mechanical strength and oxygen barrier properties. In the future, CNF films may also find new applications for example in printed electronics, if the surface smoothness of CNF films can be improved. One way to improve surface smoothness is to use thin coating solutions with zero porosity, such as molar mass controlled cellulose ester coatings.

View Article and Find Full Text PDF

Nanofibrillated cellulose (NFC) and hemicelluloses have shown to be highly promising renewable components both as barrier materials and in novel biocomposites. However, the hydrophilic nature of these materials restricts their use in some applications. In this work, the usability of modified O-acetyl galactoglucomannan (GGM) for modification of NFC surface properties was studied.

View Article and Find Full Text PDF

In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease.

View Article and Find Full Text PDF