Publications by authors named "Jari Kolehmainen"

For many of the one billion sufferers of respiratory diseases worldwide, managing their disease with inhalers improves their ability to breathe. Poor disease management and rising pollution can trigger exacerbations that require urgent relief. Higher drug deposition in the throat instead of the lungs limits the impact on patient symptoms.

View Article and Find Full Text PDF

Drug delivery via dry powder inhaler (DPI) is a complex process affected by multiple factors involving gas and particles. The performance of a carrier-based formulation depends on the release of active pharmaceutical ingredient (API) particles, typically characterized by fine particle fraction (FPF) and dispersion fraction (DF). Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) can capture relevant gas and particle interactions but is computationally expensive, especially when tracking all carrier and API particles.

View Article and Find Full Text PDF

Simulations of particle-laden flow with dielectric particles are carried out with varying levels of electrical charging and particle polarization. Simulation results reveal three distinct flow regions. For low particle charge and polarizability, flow is nearly symmetric and nonmeandering.

View Article and Find Full Text PDF

As multiscale structures are inherent in multiphase flows, constitutive models employed in conjunction with transport equations for momentum, species, and energy are scale dependent. We suggest that this scale dependency can be better quantified through deep learning techniques and formulation of transport equations for additional quantities such as drift velocity and analogies for species, energy, and momentum transfer. How one should incorporate interparticle forces, which arise through van der Waals interaction, dynamic liquid bridges between wet particles, and tribocharging, in multiscale models warrants further study.

View Article and Find Full Text PDF