Publications by authors named "Jari Keskinen"

A flexible supercapacitor (SC) is an attractive energy storage device for powering low-power sensors, since it can be built using only nontoxic and sustainable materials. In this study, the advantages of using biodegradable polylactic acid (PLA) substrate for printed SC are investigated by studying the SC's cyclic bending reliability, failure mechanism, and the impact of the bending radius. The results confirm that the SCs with laminated PLA with polymer barrier substrate exhibited the highest bending reliability, stability, and capability in preventing liquid electrolyte evaporation among the investigated substrates.

View Article and Find Full Text PDF

Wearable sensors and electronic systems are of great interest these days, but their viability depends on the availability of compatible energy storage solutions. Such sensors can either be integrated into clothing or attached directly to the skin, each case presenting a different set of requirements for the devices. In this work, we examine the performance of printed supercapacitors while attached to the skin.

View Article and Find Full Text PDF

Aqueous supercapacitors offer a safe alternative for intermediate energy storage in energy harvesting applications, but their performance is limited to relatively warm temperatures. We report the performance of glycerol as a non-toxic anti-freeze for a water-based electrolyte from room temperature to -30 °C at various concentrations. The supercapacitors are manufactured with graphite and activated carbon as current collector and electrode on a flexible polyester (PET) substrate by stencil printing, with a sodium chloride solution as the electrolyte.

View Article and Find Full Text PDF

Techniques for wireless energy harvesting (WEH) are emerging as a fascinating set of solutions to extend the lifetime of energy-constrained wireless networks, and are commonly regarded as a key functional technique for almost perpetual communications. For example, with WEH technology, wireless devices are able to harvest energy from different light sources or Radio Frequency (RF) signals broadcast by ambient or dedicated wireless transmitters to support their operation and communications capabilities. WEH technology will have increasingly wider range of use in upcoming applications such as wireless sensor networks, Machine-to-Machine (M2M) communications, and the Internet of Things.

View Article and Find Full Text PDF

Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte.

View Article and Find Full Text PDF