The COVID-19 pandemic has emphasised the need to rapidly assess infection risks for healthcare workers within the hospital environment. Using data from the first year of the pandemic, we investigated whether an individual's COVID-19 test result was associated with behavioural markers derived from routinely collected hospital data two weeks prior to a test. The temporal and spatial context of behaviours were important, with the highest risks of infection during the first wave, for staff in contact with a greater number of patients and those with greater levels of activity on floors handling the majority of COVID-19 patients.
View Article and Find Full Text PDFBackground: Insights into behaviours relevant to the transmission of infections are extremely valuable for epidemiological investigations. Healthcare worker (HCW) mobility and patient contacts within the hospital can contribute to nosocomial outbreaks, yet data on these behaviours are often limited.
Methods: Using electronic medical records and door access logs from a London teaching hospital during the COVID-19 pandemic, we derive indicators for HCW mobility and patient contacts at an aggregate level.
Exploitation of natural resources is a driver of human infectious disease emergence. The emergence of animal reservoirs of Guinea worm Dracunculus medinensis, particularly in domestic dogs Canis familiaris, has become the major impediment to global eradication of this human disease. 93% of all Guinea worms detected worldwide in 2020 were in dogs in Chad.
View Article and Find Full Text PDFThe nature of contacts between hosts can be important in facilitating or impeding the spread of pathogens within a population. Networks constructed from contacts between hosts allow examination of how individual variation might influence the spread of infections. Studying the contact networks of livestock species managed under different conditions can additionally provide insight into their influence on these contact structures.
View Article and Find Full Text PDFVariation in the spatial ecology of animals influences the transmission of infections and so understanding host behavior can improve the control of diseases. Despite the global distribution of free-ranging domestic dogs Canis familiaris and their role as reservoirs for zoonotic diseases, little is known about the dynamics of their space use. We deployed GPS loggers on owned but free-ranging dogs from six villages in rural Chad, and tracked the movements of 174 individuals in the dry season and 151 in the wet season.
View Article and Find Full Text PDFThe global programme for the eradication of Guinea worm disease, caused by the parasitic nematode Dracunculus medinensis, has been successful in driving down human cases, but infections in non-human animals, particularly domestic dogs (Canis familiaris), now present a major obstacle to further progress. Dog infections have mainly been found in Chad and, to a lesser extent, in Mali and Ethiopia. While humans classically acquire infection by drinking water containing infected copepods, it has been hypothesized that dogs might additionally or alternatively acquire infection via a novel pathway, such as consumption of fish or frogs as possible transport or paratenic hosts.
View Article and Find Full Text PDFGlobal eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest.
View Article and Find Full Text PDFContact patterns strongly influence the dynamics of disease transmission in both human and non-human animal populations. Domestic dogs Canis familiaris are a social species and are a reservoir for several zoonotic infections, yet few studies have empirically determined contact patterns within dog populations. Using high-resolution proximity logging technology, we characterised the contact networks of free-ranging domestic dogs from two settlements (n = 108 dogs, covering >80% of the population in each settlement) in rural Chad.
View Article and Find Full Text PDFThere is huge diversity in visual systems and color discrimination abilities, thought to stem from an animal's ecology and life history. Many primate species maintain a polymorphism in color vision, whereby most individuals are dichromats but some females are trichromats, implying that selection sometimes favors dichromatic vision. Detecting camouflaged prey is thought to be a task where dichromatic individuals could have an advantage.
View Article and Find Full Text PDFAnimal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates.
View Article and Find Full Text PDFCamouflage is one of the most widespread antipredator defences, and its mechanistic basis has attracted considerable interest in recent years. The effectiveness of camouflage depends on the interaction between an animal's appearance and its background. Concealment can therefore be improved by changes to an animal's own appearance, by behaviorally selecting an optimal background, or by modifying the background to better match the animal's own appearance.
View Article and Find Full Text PDFCamouflage is one of the most widespread antipredator strategies in the animal kingdom, yet no animal can match its background perfectly in a complex environment. Therefore, selection should favor individuals that use information on how effective their camouflage is in their immediate habitat when responding to an approaching threat. In a field study of African ground-nesting birds (plovers, coursers, and nightjars), we tested the hypothesis that individuals adaptively modulate their escape behavior in relation to their degree of background matching.
View Article and Find Full Text PDFEvading detection by predators is crucial for survival. Camouflage is therefore a widespread adaptation, but despite substantial research effort our understanding of different camouflage strategies has relied predominantly on artificial systems and on experiments disregarding how camouflage is perceived by predators. Here we show for the first time in a natural system, that survival probability of wild animals is directly related to their level of camouflage as perceived by the visual systems of their main predators.
View Article and Find Full Text PDF