Publications by authors named "Jared T Moore"

Herein, we report the palladium-catalyzed decarboxylative asymmetric allylic alkylation of α-enaminones. In addition to serving as valuable synthetic building blocks, we exploit the α-enaminone scaffold and its derivatives as probes to highlight structural and electronic factors that govern enantioselectivity in this asymmetric alkylation reaction. Utilizing the ()--BuPHOX ligand in a variety of nonpolar solvents, the alkylated products are obtained in up to 99% yield and 99% enantiomeric excess.

View Article and Find Full Text PDF

We report a divergent and modular protocol for the preparation of acyclic molecular frameworks containing newly created quaternary carbon stereocenters. Central to this approach is a sequence composed of a (1) regioselective and -retentive preparation of allyloxycarbonyl-trapped fully substituted stereodefined amide enolates and of a (2) enantioselective palladium-catalyzed decarboxylative allylic alkylation reaction using a novel bisphosphine ligand.

View Article and Find Full Text PDF

Bacterial DNA gyrase is an essential type II topoisomerase that enables cells to overcome topological barriers encountered during replication, transcription, recombination, and repair. This enzyme is ubiquitous in bacteria and represents an important clinical target for antibacterial therapy. In this paper we report the characterization of three exciting new gyramide analogs-from a library of 183 derivatives-that are potent inhibitors of DNA gyrase and are active against clinical strains of gram-negative bacteria (, , and 3 of 10 wild-type strains tested) and gram-positive bacteria (, , , and ; all 9 of the wild-type strains tested).

View Article and Find Full Text PDF

An enantioconvergent catalytic process has the potential to convert a racemic starting material to a single highly enantioenriched product with a maximum yield of 100%. Three mechanistically distinct approaches to effecting enantioconvergent catalysis are identified, and recent examples of each are highlighted. These processes are compared to related, non-enantioconvergent methods.

View Article and Find Full Text PDF

The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date.

View Article and Find Full Text PDF

Antibiotics targeting DNA gyrase have been a clinical success story for the past half-century, and the emergence of bacterial resistance has fueled the search for new gyrase inhibitors. In this paper we demonstrate that a new class of gyrase inhibitors, the gyramides, are bacteriostatic agents that competitively inhibit the ATPase activity of Escherichia coli gyrase and produce supercoiled DNA in vivo. E.

View Article and Find Full Text PDF

A concise synthesis of homocitric acid lactone was developed to accommodate systematic placement of carbon isotopes (specifically (13)C) for detailed studies of this cofactor. This new route uses a chiral allylic alcohol, available in multigram quantities from enzymatic resolution, as a starting material, which transposes asymmetry through an Ireland-Claisen rearrangement.

View Article and Find Full Text PDF

A new catalytic synthesis of densely-substituted tetrahydroquinolines is described. This reaction forms up to two rings, three bonds, and three stereogenic centers with excellent stereo- and regiocontrol in a single step. Although control experiments demonstrate that the active catalyst is protic acid, Sc(OTf) serves as an effective and practical pre-catalyst.

View Article and Find Full Text PDF

The synthesis and antimicrobial activity heterocyclic analogs of the diterpenoid totarol are described. An advanced synthetic intermediate with a ketone on the A-ring is used to attach fused heterocycles and a carbon-to-nitrogen atom replacement is made on the B-ring by de novo synthesis. A-ring analogs with an indole attached exhibit, for the first time, enhanced antimicrobial activity relative to the parent natural product.

View Article and Find Full Text PDF

FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol.

View Article and Find Full Text PDF