Publications by authors named "Jared Slosberg"

Unlabelled: Stress affects gastrointestinal (GI) function causing dysmotility, especially in patients. GI motility is regulated by the enteric nervous system (ENS), suggesting that stress alters ENS biology to cause dysmotility. While stress increases glucocorticoid levels through the hypothalamus-pituitary-adrenal axis, how glucocorticoids affect GI motility is not known.

View Article and Find Full Text PDF

Oligodendrocyte progenitor cells (OPCs) are highly dynamic, widely distributed glial cells of the central nervous system (CNS) that are responsible for generating myelinating oligodendrocytes during development. By also generating new oligodendrocytes in the adult CNS, OPCs allow formation of new myelin sheaths in response to environmental and behavioral changes and play a crucial role in regenerating myelin following demyelination (remyelination). However, the rates of OPC proliferation and differentiation decline dramatically with aging, which may impair homeostasis, remyelination, and adaptive myelination during learning.

View Article and Find Full Text PDF

The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons.

View Article and Find Full Text PDF

Background: The cell cycle is a highly conserved, continuous process which controls faithful replication and division of cells. Single-cell technologies have enabled increasingly precise measurements of the cell cycle both as a biological process of interest and as a possible confounding factor. Despite its importance and conservation, there is no universally applicable approach to infer position in the cell cycle with high-resolution from single-cell RNA-seq data.

View Article and Find Full Text PDF

Stretch activation (SA) is a delayed increase in force following a rapid muscle length increase. SA is best known for its role in asynchronous insect flight muscle, where it has replaced calcium's typical role of modulating muscle force levels during a contraction cycle. SA also occurs in mammalian skeletal muscle but has previously been thought to be too low in magnitude, relative to calcium-activated (CA) force, to be a significant contributor to force generation during locomotion.

View Article and Find Full Text PDF