JOURNAL/nrgr/04.03/01300535-202504000-00033/figure1/v/2024-07-06T104127Z/r/image-tiff Behavioral recovery using (viable) peripheral nerve allografts to repair ablation-type (segmental-loss) peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration. Furthermore, such peripheral nerve allografts undergo immunological rejection by the host immune system.
View Article and Find Full Text PDFNeural Regen Res
December 2023
The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a devastating disorder, which impacts the lives of millions of people worldwide with no clinically standardized treatment. Both pro-recovery and anti-recovery factors contribute to the overall outcome after the initial SCI. Sex is emerging as an important variable, which can affect recovery post-SCI.
View Article and Find Full Text PDFSegmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points.
View Article and Find Full Text PDFWe review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery.
View Article and Find Full Text PDFThis review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general.
View Article and Find Full Text PDFPeripheral nerves (PNs) are frequently injured as a result of trauma or disease. Development of therapies to regenerate PNs requires the use of animal models, typically beginning in rodents and progressing to larger species. There are several large animal models of PN regeneration that each has their benefits and drawbacks.
View Article and Find Full Text PDFGlycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI.
View Article and Find Full Text PDFMore than a quarter of a million individuals in the US live with spinal cord injury (SCI). SCI disrupts neural circuitry to vital organs in the body. Despite severe incidences of long-term peripheral complications from SCI, the cardio-metabolic consequences and divergences in sex-related responses are not well described.
View Article and Find Full Text PDFSegmental injuries to peripheral nerves (PNs) too often result in lifelong disability or pain syndromes due to a lack of restorative treatment options. For injuries beyond a critical size, a bridging device must be inserted to direct regeneration. PN allografts from immunologically incompatible donors are highly effective bridging devices but are not a regular clinical option because of the expense and health risks of systemic immunosuppression (ISN).
View Article and Find Full Text PDFPeripheral nerves extend throughout the body, innervating target tissues with motor or sensory axons. Due to widespread distribution, peripheral nerves are frequently damaged because of trauma or disease. As methods and strategies have been developed to assess peripheral nerve injury in animal models, function and regeneration, analyzing the morphometry of the peripheral nerve has become an essential terminal outcome measurement.
View Article and Find Full Text PDF