Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible.
View Article and Find Full Text PDFMany of the ubiquitous experiments of biomolecular NMR, including [Formula: see text], [Formula: see text], and CEST, involve acquiring repeated 2D spectra under slightly different conditions. Such experiments are amenable to acceleration using non-uniform sampling spectral reconstruction methods that take advantage of prior information. We previously developed one such technique, an iterated maps method (DiffMap) that we successfully applied to 2D NMR spectra, including [Formula: see text] relaxation dispersion data.
View Article and Find Full Text PDFNMR relaxation dispersion experiments play a central role in exploring molecular motion over an important range of timescales, and are an example of a broader class of multidimensional NMR experiments that probe important biomolecules. However, resolving the spectral features of these experiments using the Fourier transform requires sampling the full Nyquist grid of data, making these experiments very costly in time. Practitioners often reduce the experiment time by omitting 1D experiments in the indirectly observed dimensions, and reconstructing the spectra using one of a variety of post-processing algorithms.
View Article and Find Full Text PDFA discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal.
View Article and Find Full Text PDF