Publications by authors named "Jared R Leadbetter"

Chemolithoautotrophic manganese oxidation has long been theorized but only recently demonstrated in a bacterial coculture. The majority member of the coculture, " Manganitrophus noduliformans," is a distinct but not yet isolated lineage in the phylum (). Here, we established two additional MnCO-oxidizing cultures using inocula from Santa Barbara (California) and Boetsap (South Africa).

View Article and Find Full Text PDF

VAI-C was isolated due to its ability to utilize acyl-homoserine lactones (AHLs) as the sole source of carbon, energy, and nitrogen. Here, we present a hybrid assembly of the VAI-C genome sequence, consisting of a primary chromosome, a secondary chromid, and a plasmid.

View Article and Find Full Text PDF

Here, we report the genome sequence of strain ECR, which was isolated from the river/ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and sequencing were performed as part of the 2016 and 2018 Microbial Diversity courses at the Marine Biological Laboratory in Woods Hole, Massachusetts.

View Article and Find Full Text PDF

We grew a soil enrichment culture to identify organisms that anaerobically oxidize phenazine-1-carboxylic acid. A strain of was isolated from this enrichment and sequenced by both Illumina and PacBio technologies. It has a genome with a length of 5.

View Article and Find Full Text PDF

Manganese is one of the most abundant elements on Earth. The oxidation of manganese has long been theorized-yet has not been demonstrated-to fuel the growth of chemolithoautotrophic microorganisms. Here we refine an enrichment culture that exhibits exponential growth dependent on Mn(II) oxidation to a co-culture of two microbial species.

View Article and Find Full Text PDF

We report here the draft genome sequence of a strain of Tenacibaculum discolor () that was isolated from the river-ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and genomic sequencing were performed during the 2016 and 2018 Microbial Diversity summer programs at the Marine Biological Laboratory in Woods Hole, Massachusetts.

View Article and Find Full Text PDF

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs.

View Article and Find Full Text PDF

Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.

View Article and Find Full Text PDF

Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA.

View Article and Find Full Text PDF

Numerous bacteria assemble proteinaceous microcompartments to isolate certain biochemical reactions within the cytoplasm. The assembly, structure, contents, and functions of these microcompartments are active areas of research. Here we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes propanediol utilization (PDU) microcompartments when starved or grown on 1,2-propanediol (1,2-PD) or rhamnose.

View Article and Find Full Text PDF

Microorganisms have evolved a spectacular diversity of metabolisms, some of which allow them to overcome environmental constraints, utilize abundant but inaccessible resources and drive nutrient cycling in various ecosystems. The termite hindgut microbial community is optimized to metabolize wood, and in recent years, the in situ physiological and ecological functions of community members have been researched. Spirochetes are abundant in the termite gut, and herein, putative aromatic meta-cleavage pathway genes typical of aerobic pseudomonads were located in genomes of homoacetogenic termite hindgut 'anaerobes', Treponema primitia str.

View Article and Find Full Text PDF

Unlabelled: When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes.

View Article and Find Full Text PDF

Variovorax paradoxus is a ubiquitous betaproteobacterium involved in plant growth promotion, the degradation of xenobiotics, and quorum-quenching activity. The genome of V. paradoxus strain EPS consists of a single circular chromosome of 6,550,056 bp, with a 66.

View Article and Find Full Text PDF

Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts.

View Article and Find Full Text PDF

Unlabelled: Termites and their gut microbes engage in fascinating dietary mutualisms. Less is known about how these complex symbioses have evolved after first emerging in an insect ancestor over 120 million years ago. Here we examined a bacterial gene, formate dehydrogenase (fdhF), that is key to the mutualism in 8 species of "higher" termite (members of the Termitidae, the youngest and most biomass-abundant and species-rich termite family).

View Article and Find Full Text PDF

Hydrogen is the central free intermediate in the degradation of wood by termite gut microbes and can reach concentrations exceeding those measured for any other biological system. Degenerate primers targeting the largest family of [FeFe] hydrogenases observed in a termite gut metagenome have been used to explore the evolution and representation of these enzymes in termites. Sequences were cloned from the guts of the higher termites Amitermes sp.

View Article and Find Full Text PDF

We have designed and utilized degenerate primers in the phylogenetic analysis of [FeFe] hydrogenase gene diversity in the gut ecosystems of roaches and lower termites. H(2) is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The primers designed target with specificity the largest group of enzymatic H domain proteins previously identified in a termite gut metagenome.

View Article and Find Full Text PDF

Two hallmarks of the Firmicute phylum, which includes the Bacilli and Clostridia classes, are their ability to form endospores and their "Gram-positive" single-membraned, thick-cell-wall envelope structure. Acetonema longum is part of a lesser-known family (the Veillonellaceae) of Clostridia that form endospores but that are surprisingly "Gram negative," possessing both an inner and outer membrane and a thin cell wall. Here, we present macromolecular resolution, 3D electron cryotomographic images of vegetative, sporulating, and germinating A.

View Article and Find Full Text PDF

We have completed a bioinformatic analysis of the hydrogenases encoded in the genomes of three termite gut treponeme isolates: hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and the hydrogen-producing, sugar-fermenting Treponema azotonutricium ZAS-9. H(2) is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The spirochetes encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, respectively, but no other recognizable hydrogenases.

View Article and Find Full Text PDF

Viruses may very well be the most abundant biological entities on the planet. Yet neither metagenomic studies nor classical phage isolation techniques have shed much light on the identity of the hosts of most viruses. We used a microfluidic digital polymerase chain reaction (PCR) approach to physically link single bacterial cells harvested from a natural environment with a viral marker gene.

View Article and Find Full Text PDF

The bacterial flagellum is one of nature's most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine.

View Article and Find Full Text PDF

Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes.

View Article and Find Full Text PDF

In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes.

View Article and Find Full Text PDF

The hindguts of wood-feeding termites typically contain hundreds of microbial species. Together with their insect host, these gut microbes degrade lignocellulose into usable catabolites. Although past research revealed many facets of the stepwise flow of metabolites in this scheme, not much is known about the breadth of interactions occurring between termite-gut microbes.

View Article and Find Full Text PDF

Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants.

View Article and Find Full Text PDF