Background: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making.
View Article and Find Full Text PDFSieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an osseointegrated neural interface (ONI) for greater selectivity toward improving prosthetic control. are that (A) the addition of a sieve interface to a cuff electrode housed within the medullary canal of the femur as part of an ONI would be capable of measuring efferent and afferent compound nerve action potentials (CNAPs) through a greater number of channels; (B) that signaling improves over time; and (C) that stimulation at this interface generates measurable cortical somatosensory evoked potentials through a greater number of channels.
View Article and Find Full Text PDFIntroduction: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood.
View Article and Find Full Text PDFBackground: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments.
Materials And Methods: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control.
Introduction: While debate persists over how to best prevent or treat amputation neuromas, the more pressing question of how to best marry residual nerves to state-of-the-art robotic prostheses for naturalistic control of a replacement limb has come to the fore. One potential solution involves the transposition of terminal nerve ends into the medullary canal of long bones, creating the neural interface within the bone. Nerve transposition into bone is a long-practiced, clinically relevant treatment for painful neuromas.
View Article and Find Full Text PDFBackground: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation.
View Article and Find Full Text PDFBackground: Chronic stability and high degrees of selectivity are both essential but somewhat juxtaposed components for creating an implantable bi-directional PNI capable of controlling of a prosthetic limb. While the more invasive implantable electrode arrays provide greater specificity, they are less stable over time due to compliance mismatch with the dynamic soft tissue environment in which the interface is created.
New Method: This paper takes the surgical approach of transposing nerves into bone to create neural interface within the medullary canal of long bones, an osseointegrated neural interface, to provide greater stability for implantable electrodes.
The studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film micro-electrocorticography (μECoG) grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed μECoG arrays. In a longitudinal chronic study, μECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed μECoG grids that are stable for periods of at least 1 month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent μECoG grids acutely placed on the thinned skull.
View Article and Find Full Text PDFThe trigeminal nerve (cranial nerve V), along with other cranial nerves, has in recent years become a popular target for bioelectric medicine due to its direct access to neuromodulatory centers. Trigeminal nerve stimulation is currently being evaluated as an adjunctive treatment for various neurodegenerative and neuropsychiatric diseases despite the mechanism of action being in question. In this work, we describe the development and validation of a novel neural interface for the infraorbital branch of the trigeminal nerve utilizing a thin film (TF) nerve cuff containing multiple electrode sites allowing for more selective stimulation of the nerve.
View Article and Find Full Text PDFBackground: Bioelectric medicine seeks to modulate neural activity via targeted electrical stimulation to treat disease. Recent clinical evidence supports trigeminal nerve stimulation as a bioelectric treatment for several neurological disorders; however, the mechanisms of trigeminal nerve stimulation and potential side effects remain largely unknown. The goal of this study is to optimize the methodology and reproducibility of neural interface implantation for mechanistic studies in rodents.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
In recent years, the trigeminal nerve (CN V) has become a popular target for neuromodulation therapies to treat of a variety of diseases due to its access to neuromodulatory centers. Despite promising preclinical and clinical data, the mechanism of action of trigeminal nerve stimulation (TNS) remains in question. In this work, we describe the development and evaluation of a neural interface targeting the mouse trigeminal nerve with the goal of enabling future mechanistic research on TNS.
View Article and Find Full Text PDFElectrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes.
View Article and Find Full Text PDFTransparent graphene-based neural electrode arrays provide unique opportunities for simultaneous investigation of electrophysiology, various neural imaging modalities, and optogenetics. Graphene electrodes have previously demonstrated greater broad-wavelength transmittance (∼90%) than other transparent materials such as indium tin oxide (∼80%) and ultrathin metals (∼60%). This protocol describes how to fabricate and implant a graphene-based microelectrocorticography (μECoG) electrode array and subsequently use this alongside electrophysiology, fluorescence microscopy, optical coherence tomography (OCT), and optogenetics.
View Article and Find Full Text PDFNeural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording.
View Article and Find Full Text PDF