Publications by authors named "Jared M Schrader"

Bacterial ribonucleoprotein bodies (BR-bodies) are dynamic biomolecular condensates that play a pivotal role in RNA metabolism. We investigated how BR-bodies significantly influence mRNA fate by transitioning between liquid- and solid-like states in response to stress. With a combination of single-molecule and bulk fluorescence microscopy, biochemical assays, and quantitative analyses, we determine that BR-bodies promote efficient mRNA decay in a liquid-like condensate during exponential growth.

View Article and Find Full Text PDF

Studies over the past several years have shown that distinct RNAs can be targeted to subcellular locations in bacterial cells. The ability to investigate localized RNAs in bacteria is currently limited to imaging-based approaches or to laborious procedures to isolate ribonucleoprotein complexes by grad-seq, HITS-CLIP, or Rloc-seq. However, a major challenge in studying mRNA localization in bacterial cells is that bacterial mRNAs typically last for only a few minutes in the cell, while experiments to investigate their localization or interaction partners can take much longer.

View Article and Find Full Text PDF

Apart from its well-established role in the initiation of transcription, the general transcription factor TFIIB has been implicated in the termination step as well. The ubiquity of TFIIB involvement in termination as well as mechanistic details of its termination function, however, remain largely unexplored. Using GRO-seq analyses, we compared the terminator readthrough phenotype in the mutant (TFIIB) and the isogenic wild type (TFIIB) strains.

View Article and Find Full Text PDF

RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation.

View Article and Find Full Text PDF

Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont , which colonizes the roots of compatible legume plants.

View Article and Find Full Text PDF

RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' UTR. While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation.

View Article and Find Full Text PDF

Bacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis.

View Article and Find Full Text PDF

Bacterial Ribonucleoprotein bodies (BR-bodies) play an essential role in organizing RNA degradation via phase separation in the cytoplasm of bacteria. BR-bodies mediate multi-step mRNA decay through the concerted activity of the endoribonuclease RNase E coupled with the 3'-5' exoribonuclease Polynucleotide Phosphorylase (PNPase). In vivo, studies indicated that the loss of PNPase recruitment into BR-bodies led to a significant build-up of RNA decay intermediates in Caulobacter crescentus.

View Article and Find Full Text PDF

The initiation of translation in bacteria is thought to occur upon base pairing between the Shine-Dalgarno (SD) site in the mRNA and the anti-SD site in the rRNA. However, in many bacterial species, such as Caulobacter crescentus, a minority of mRNAs have SD sites. To examine the functional importance of SD sites in C.

View Article and Find Full Text PDF

Bacterial translation is thought to initiate by base pairing of the 16S rRNA and the Shine-Dalgarno sequence in the mRNA's 5' untranslated region (UTR). However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5' UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine-Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation.

View Article and Find Full Text PDF

While bacteria typically lack membrane bound organelles, the mechanisms of subcellular organization have been unclear. Bacteria have recently been found to harbor membraneless organelles containing enzymes of many biochemical pathways. These organelles, called biomolecular condensates, have been found to commonly form through the process of liquid-liquid phase separation and are typically enriched in nucleic acid binding proteins.

View Article and Find Full Text PDF

Bacterial RNP bodies (BR bodies) contain the mRNA decay machinery, but the collection of associated RNAs and proteins are poorly defined. Here, we present a protocol for the rapid differential centrifugation-based enrichment of BR bodies from cells. As native BR bodies are highly labile and dissociate by degrading internal mRNAs, an active site mutant of RNase E, which blocks dissolution of BR bodies, allows BR-body stabilization during enrichment.

View Article and Find Full Text PDF

is a model alphaproteobacterium with a well-studied genetic network controlling its cell cycle. Essential for such studies is an accurate map of the expressed features of its genome. Here, we provide an updated map of the expressed RNAs by integrative analysis of 5' global rapid amplification of cDNA ends, transcriptome sequencing, rifampicin treatment RNA sequencing, and RNA end-enriched sequencing data sets.

View Article and Find Full Text PDF

In bacteria, mRNA decay is controlled by megadalton scale macromolecular assemblies called, "RNA degradosomes," composed of nucleases and other RNA decay associated proteins. Recent advances in bacterial cell biology have shown that RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress granules. This review will highlight the functional role that BR-bodies play in the mRNA decay process through its organization into a membraneless organelle in the bacterial cytoplasm.

View Article and Find Full Text PDF

Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

The bacterium exhibits a complex multicellular life cycle. In the presence of nutrients, cells prey cooperatively. Upon starvation, they enter a developmental cycle wherein cells aggregate to produce macroscopic fruiting bodies filled with resistant myxospores.

View Article and Find Full Text PDF

is a model for the bacterial cell cycle which culminates in asymmetric cell division, yet little is known about the absolute levels of protein synthesis of the cellular parts needed to complete the cell cycle. Here we utilize ribosome profiling to provide absolute measurements of mRNA translation in , providing an important resource with quantitative genome-wide measurements of protein output across individual genes. Analysis of protein synthesis rates revealed ∼4.

View Article and Find Full Text PDF

Bacterial cell division is the result of a productive round of the cell cycle to yield two daughter cells. The cell cycle is highly coordinated in Caulobacter crescentus where it is driven by a cell cycle gene-regulatory network that coordinates gene expression with the major cell cycle events such as chromosome replication and cell division. Recent ribosomes profiling data showed that 484 genes undergo changes in translation efficiency during the cell cycle, suggesting a broad role for translational control in cell cycle regulation.

View Article and Find Full Text PDF

Ribonucleoprotein (RNP) granules play an important role in organizing eukaryotic mRNA metabolism via liquid-liquid phase separation (LLPS) of mRNA decay factors into membrane-less organelles in the cytoplasm. Here we show that the bacterium Caulobacter crescentus Ribonuclease (RNase) E assembles RNP LLPS condensates that we term bacterial RNP-bodies (BR-bodies), similar to eukaryotic P-bodies and stress granules. RNase E requires RNA to assemble a BR-body, and disassembly requires RNA cleavage, suggesting BR-bodies provide localized sites of RNA degradation.

View Article and Find Full Text PDF

In order to function on the ribosome with uniform rate and adequate accuracy, each bacterial tRNA has evolved to have a characteristic sequence and set of modifications that compensate for the differing physical properties of its esterified amino acid and its codon-anticodon interaction. The sequence of the T-stem of each tRNA compensates for the differential effect of the esterified amino acid on the binding and release of EF-Tu during decoding. The sequence and modifications in the anticodon loop and core of tRNA impact the codon-anticodon strength and the ability of the tRNA to bend during codon recognition.

View Article and Find Full Text PDF

We report the dynamic spatial organization of RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in , where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones.

View Article and Find Full Text PDF

Progression of the Caulobacter cell cycle requires temporal and spatial control of gene expression, culminating in an asymmetric cell division yielding distinct daughter cells. To explore the contribution of translational control, RNA-seq and ribosome profiling were used to assay global transcription and translation levels of individual genes at six times over the cell cycle. Translational efficiency (TE) was used as a metric for the relative rate of protein production from each mRNA.

View Article and Find Full Text PDF

Caulobacter crescentus is a premier model organism for studying the molecular basis of cellular asymmetry. The Caulobacter community has generated a wealth of high-throughput spatiotemporal databases including data from gene expression profiling experiments (microarrays, RNA-seq, ChIP-seq, ribosome profiling, LC-ms proteomics), gene essentiality studies (Tn-seq), genome wide protein localization studies, and global chromosome methylation analyses (SMRT sequencing). A major challenge involves the integration of these diverse data sets into one comprehensive community resource.

View Article and Find Full Text PDF

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation.

View Article and Find Full Text PDF

Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkr567fh12uka52qq3cbrrm9ta06jtahg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once